2-Dimensional high-quality reconstruction of compressive measurements of phased array weather radar

Ryosuke Kawami, Akira Hirabayashi, Nobuyuki Tanaka, Motoi Shibata, Takashi Ijiri, Shigeharu Shimamura, Hiroshi Kikuchi, Gwan Kim, Tomoo Ushio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

This paper proposes a compressive sensing method for the phased array weather radar (PAWR), which is capable of three-dimensional observation with high spatial resolution in 30 seconds. Because of the large amount of observation data, which is more than 1 gigabyte per minute, data compression is an essential technology to operate PAWR in the real world. Even though many conventional studies applied compressive sensing (CS) to weather radar measurements, their reconstruction quality should be further improved. To this end, we define a new cost function that expresses prior knowledge about weather radar measurements, i.e., local similarities. Since the cost function is convex, we can derive an efficient algorithm based on the so-called convex optimization techniques, in particular simultaneous direction method of multipliers (SDMM). Simulation results show that the proposed method outperforms the conventional methods for real observation data with improvement of 4% in the normalized error.

Original languageEnglish
Title of host publication2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9789881476821
DOIs
Publication statusPublished - 2017 Jan 17
Externally publishedYes
Event2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 - Jeju, Korea, Republic of
Duration: 2016 Dec 132016 Dec 16

Other

Other2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
Country/TerritoryKorea, Republic of
CityJeju
Period16/12/1316/12/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of '2-Dimensional high-quality reconstruction of compressive measurements of phased array weather radar'. Together they form a unique fingerprint.

Cite this