TY - JOUR
T1 - A degree condition for the existence of k‐factors
AU - Nishimura, Tsuyoshi
N1 - Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 1992/6
Y1 - 1992/6
N2 - Let k be an integer such that ≦, and let G be a connected graph of order n with ≦, kn even, and minimum degree at least k. We prove that if G satisfies max(deg(u), deg(v)) ≦ n/2 for each pair of nonadjacent vertices u, v in G, then G has a k‐factor.
AB - Let k be an integer such that ≦, and let G be a connected graph of order n with ≦, kn even, and minimum degree at least k. We prove that if G satisfies max(deg(u), deg(v)) ≦ n/2 for each pair of nonadjacent vertices u, v in G, then G has a k‐factor.
UR - http://www.scopus.com/inward/record.url?scp=84987491029&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84987491029&partnerID=8YFLogxK
U2 - 10.1002/jgt.3190160205
DO - 10.1002/jgt.3190160205
M3 - Article
AN - SCOPUS:84987491029
SN - 0364-9024
VL - 16
SP - 141
EP - 151
JO - Journal of Graph Theory
JF - Journal of Graph Theory
IS - 2
ER -