A highly selective photoresist ashing process for silicon nitride films by addition of trifluoromethane

Makoto Saito, Hideo Eto, Nobuaki Makino, Kayoko Omiya, Tetsuya Homma, Takao Nagatomo

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

A highly selective photoresist ashing process was developed for the fabrication of thin-film transistor liquid-crystal displays (TFT-LCDs). This ashing process utilizes downflow plasma consisting of a carbon trifluoromethane/oxygen (CHF3/O2) gas mixture at a low temperature. The etching selectivity of photoresist films to silicon nitride (SiN) film increased when using the CHF3/O2 gas mixture plasma, as compared to that when using the carbon tetrafluoride/oxygen (CF4/O2) gas mixture plasma. At the CHF3 gas flow rate of 30 sccm, a high etching selectivity ratio of about 1080 for the photoresist films to the SiN films was achieved at room temperature. On the basis of surface analysis results for SiN films and plasma analysis results for the CHF3/O2 gas mixture, a mechanism for the high etching selectivity of the photoresist films was proposed. Reaction products that were formed on SiN films by the CHF3/O2 gas mixture plasma obstructed the etching of SiN films by fluorine (F) radicals resulting in the high selectivity. It was found that the CHF3/O2 gas mixture plasma reacted with SiN, resulting in the formation of a protective reaction product that is considered to be an ammonium salt such as (NH4)2SiF6.

Original languageEnglish
Pages (from-to)5271-5274
Number of pages4
JournalJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
Volume40
Issue number9 A
Publication statusPublished - 2001 Sep

Fingerprint

Photoresists
Silicon nitride
photoresists
silicon nitrides
Gas mixtures
gas mixtures
Plasmas
Etching
selectivity
etching
Reaction products
reaction products
carbon tetrafluoride
Carbon
Oxygen
Surface analysis
oxygen
Thin film transistors
Liquid crystal displays
Fluorine

Keywords

  • Ashing
  • Downflow plasma
  • Photoresist
  • Silicon nitride
  • Trifluoromethane

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

A highly selective photoresist ashing process for silicon nitride films by addition of trifluoromethane. / Saito, Makoto; Eto, Hideo; Makino, Nobuaki; Omiya, Kayoko; Homma, Tetsuya; Nagatomo, Takao.

In: Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, Vol. 40, No. 9 A, 09.2001, p. 5271-5274.

Research output: Contribution to journalArticle

@article{00586aae589949b98ba927fdef815393,
title = "A highly selective photoresist ashing process for silicon nitride films by addition of trifluoromethane",
abstract = "A highly selective photoresist ashing process was developed for the fabrication of thin-film transistor liquid-crystal displays (TFT-LCDs). This ashing process utilizes downflow plasma consisting of a carbon trifluoromethane/oxygen (CHF3/O2) gas mixture at a low temperature. The etching selectivity of photoresist films to silicon nitride (SiN) film increased when using the CHF3/O2 gas mixture plasma, as compared to that when using the carbon tetrafluoride/oxygen (CF4/O2) gas mixture plasma. At the CHF3 gas flow rate of 30 sccm, a high etching selectivity ratio of about 1080 for the photoresist films to the SiN films was achieved at room temperature. On the basis of surface analysis results for SiN films and plasma analysis results for the CHF3/O2 gas mixture, a mechanism for the high etching selectivity of the photoresist films was proposed. Reaction products that were formed on SiN films by the CHF3/O2 gas mixture plasma obstructed the etching of SiN films by fluorine (F) radicals resulting in the high selectivity. It was found that the CHF3/O2 gas mixture plasma reacted with SiN, resulting in the formation of a protective reaction product that is considered to be an ammonium salt such as (NH4)2SiF6.",
keywords = "Ashing, Downflow plasma, Photoresist, Silicon nitride, Trifluoromethane",
author = "Makoto Saito and Hideo Eto and Nobuaki Makino and Kayoko Omiya and Tetsuya Homma and Takao Nagatomo",
year = "2001",
month = "9",
language = "English",
volume = "40",
pages = "5271--5274",
journal = "Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes",
issn = "0021-4922",
publisher = "Japan Society of Applied Physics",
number = "9 A",

}

TY - JOUR

T1 - A highly selective photoresist ashing process for silicon nitride films by addition of trifluoromethane

AU - Saito, Makoto

AU - Eto, Hideo

AU - Makino, Nobuaki

AU - Omiya, Kayoko

AU - Homma, Tetsuya

AU - Nagatomo, Takao

PY - 2001/9

Y1 - 2001/9

N2 - A highly selective photoresist ashing process was developed for the fabrication of thin-film transistor liquid-crystal displays (TFT-LCDs). This ashing process utilizes downflow plasma consisting of a carbon trifluoromethane/oxygen (CHF3/O2) gas mixture at a low temperature. The etching selectivity of photoresist films to silicon nitride (SiN) film increased when using the CHF3/O2 gas mixture plasma, as compared to that when using the carbon tetrafluoride/oxygen (CF4/O2) gas mixture plasma. At the CHF3 gas flow rate of 30 sccm, a high etching selectivity ratio of about 1080 for the photoresist films to the SiN films was achieved at room temperature. On the basis of surface analysis results for SiN films and plasma analysis results for the CHF3/O2 gas mixture, a mechanism for the high etching selectivity of the photoresist films was proposed. Reaction products that were formed on SiN films by the CHF3/O2 gas mixture plasma obstructed the etching of SiN films by fluorine (F) radicals resulting in the high selectivity. It was found that the CHF3/O2 gas mixture plasma reacted with SiN, resulting in the formation of a protective reaction product that is considered to be an ammonium salt such as (NH4)2SiF6.

AB - A highly selective photoresist ashing process was developed for the fabrication of thin-film transistor liquid-crystal displays (TFT-LCDs). This ashing process utilizes downflow plasma consisting of a carbon trifluoromethane/oxygen (CHF3/O2) gas mixture at a low temperature. The etching selectivity of photoresist films to silicon nitride (SiN) film increased when using the CHF3/O2 gas mixture plasma, as compared to that when using the carbon tetrafluoride/oxygen (CF4/O2) gas mixture plasma. At the CHF3 gas flow rate of 30 sccm, a high etching selectivity ratio of about 1080 for the photoresist films to the SiN films was achieved at room temperature. On the basis of surface analysis results for SiN films and plasma analysis results for the CHF3/O2 gas mixture, a mechanism for the high etching selectivity of the photoresist films was proposed. Reaction products that were formed on SiN films by the CHF3/O2 gas mixture plasma obstructed the etching of SiN films by fluorine (F) radicals resulting in the high selectivity. It was found that the CHF3/O2 gas mixture plasma reacted with SiN, resulting in the formation of a protective reaction product that is considered to be an ammonium salt such as (NH4)2SiF6.

KW - Ashing

KW - Downflow plasma

KW - Photoresist

KW - Silicon nitride

KW - Trifluoromethane

UR - http://www.scopus.com/inward/record.url?scp=0035456973&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035456973&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0035456973

VL - 40

SP - 5271

EP - 5274

JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes

JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes

SN - 0021-4922

IS - 9 A

ER -