A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel

Hitoshi Miyamoto, Akira Kadota, Kouichi Morimoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, we analytically and experimentally investigated propagation characteristics of a hydraulic bore in a rough bed open-channel, and attempted to model the bed friction effect. Momentum conservation was used to derive an equation for the propagation velocity, in which both the frictional and gravitational forces were taken into account. A laboratory experiment was carried out to develop a bottom friction law applied to the bore propagation. The friction coefficient was obtained as an extension from that for a steady-state open-channel flow, and was set to be a function of the channel slope and the water level difference around the bore head. As the water level difference decreased and/or the slope increased, the coefficient became small and converged to the steady-state value in the limit. The results obtained in this paper indicated that the bottom friction effect was one of the important components to describe the bore propagation in an open-channel with a rough bed.

Original languageEnglish
Title of host publication34th IAHR Congress 2011 - Balance and Uncertainty
Subtitle of host publicationWater in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering
PublisherInternational Association for Hydro-Environment Engineering and Research (IAHR)
Pages3651-3658
Number of pages8
ISBN (Electronic)9780858258686
Publication statusPublished - 2011 Jan 1
Externally publishedYes
Event34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering - Brisbane, Australia
Duration: 2011 Jun 262011 Jul 1

Publication series

Name34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering

Conference

Conference34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering
CountryAustralia
CityBrisbane
Period11/6/2611/7/1

Fingerprint

bottom friction
Hydraulics
Friction
hydraulics
water level
friction
Water levels
modeling
open channel flow
Open channel flow
momentum
Conservation
Momentum
effect
Experiments
laboratory experiment

Keywords

  • Bottom friction
  • Hydraulic bore
  • Laboratory experiment
  • Momentum conservation

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Water Science and Technology
  • Environmental Science (miscellaneous)

Cite this

Miyamoto, H., Kadota, A., & Morimoto, K. (2011). A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel. In 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering (pp. 3651-3658). (34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering). International Association for Hydro-Environment Engineering and Research (IAHR).

A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel. / Miyamoto, Hitoshi; Kadota, Akira; Morimoto, Kouichi.

34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering. International Association for Hydro-Environment Engineering and Research (IAHR), 2011. p. 3651-3658 (34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Miyamoto, H, Kadota, A & Morimoto, K 2011, A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel. in 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering. 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering, International Association for Hydro-Environment Engineering and Research (IAHR), pp. 3651-3658, 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 11/6/26.
Miyamoto H, Kadota A, Morimoto K. A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel. In 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering. International Association for Hydro-Environment Engineering and Research (IAHR). 2011. p. 3651-3658. (34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering).
Miyamoto, Hitoshi ; Kadota, Akira ; Morimoto, Kouichi. / A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel. 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering. International Association for Hydro-Environment Engineering and Research (IAHR), 2011. pp. 3651-3658 (34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering).
@inproceedings{1936100ead5642a8b0f1023f0d40da99,
title = "A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel",
abstract = "In this study, we analytically and experimentally investigated propagation characteristics of a hydraulic bore in a rough bed open-channel, and attempted to model the bed friction effect. Momentum conservation was used to derive an equation for the propagation velocity, in which both the frictional and gravitational forces were taken into account. A laboratory experiment was carried out to develop a bottom friction law applied to the bore propagation. The friction coefficient was obtained as an extension from that for a steady-state open-channel flow, and was set to be a function of the channel slope and the water level difference around the bore head. As the water level difference decreased and/or the slope increased, the coefficient became small and converged to the steady-state value in the limit. The results obtained in this paper indicated that the bottom friction effect was one of the important components to describe the bore propagation in an open-channel with a rough bed.",
keywords = "Bottom friction, Hydraulic bore, Laboratory experiment, Momentum conservation",
author = "Hitoshi Miyamoto and Akira Kadota and Kouichi Morimoto",
year = "2011",
month = "1",
day = "1",
language = "English",
series = "34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering",
publisher = "International Association for Hydro-Environment Engineering and Research (IAHR)",
pages = "3651--3658",
booktitle = "34th IAHR Congress 2011 - Balance and Uncertainty",

}

TY - GEN

T1 - A physical modeling of bottom frictional resistance on a hydraulic bore propagating in an open-channel

AU - Miyamoto, Hitoshi

AU - Kadota, Akira

AU - Morimoto, Kouichi

PY - 2011/1/1

Y1 - 2011/1/1

N2 - In this study, we analytically and experimentally investigated propagation characteristics of a hydraulic bore in a rough bed open-channel, and attempted to model the bed friction effect. Momentum conservation was used to derive an equation for the propagation velocity, in which both the frictional and gravitational forces were taken into account. A laboratory experiment was carried out to develop a bottom friction law applied to the bore propagation. The friction coefficient was obtained as an extension from that for a steady-state open-channel flow, and was set to be a function of the channel slope and the water level difference around the bore head. As the water level difference decreased and/or the slope increased, the coefficient became small and converged to the steady-state value in the limit. The results obtained in this paper indicated that the bottom friction effect was one of the important components to describe the bore propagation in an open-channel with a rough bed.

AB - In this study, we analytically and experimentally investigated propagation characteristics of a hydraulic bore in a rough bed open-channel, and attempted to model the bed friction effect. Momentum conservation was used to derive an equation for the propagation velocity, in which both the frictional and gravitational forces were taken into account. A laboratory experiment was carried out to develop a bottom friction law applied to the bore propagation. The friction coefficient was obtained as an extension from that for a steady-state open-channel flow, and was set to be a function of the channel slope and the water level difference around the bore head. As the water level difference decreased and/or the slope increased, the coefficient became small and converged to the steady-state value in the limit. The results obtained in this paper indicated that the bottom friction effect was one of the important components to describe the bore propagation in an open-channel with a rough bed.

KW - Bottom friction

KW - Hydraulic bore

KW - Laboratory experiment

KW - Momentum conservation

UR - http://www.scopus.com/inward/record.url?scp=85066152293&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066152293&partnerID=8YFLogxK

M3 - Conference contribution

T3 - 34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering

SP - 3651

EP - 3658

BT - 34th IAHR Congress 2011 - Balance and Uncertainty

PB - International Association for Hydro-Environment Engineering and Research (IAHR)

ER -