A Study of Calcination Conditions for Synthesizing Fine Particles of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy and (Nd0.33Eu0.33Gd0.33)2BaCuO5

Atikorn Wongsatanawarid, Sunsanee Pinmangkorn, Somchai Wongwises, Masato Murakami

Research output: Contribution to journalArticle

Abstract

The calcination temperature was studied for optimum processing conditions for preparing (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy (NEG-123) and (Nd0.33Eu0.33Gd0.33)2BaCuO5 (NEG-211) powders with good quality and fine size. This study used commercially available raw powders of Nd2O3, Eu2O3, Gd2O3, BaO2, and CuO in a purity of 99.9 % with 3–5- μm particle size. These raw powders were carefully weighed to have the compositions of NEG-123 and NEG-211 and pressed into pellets 25 g in weight. The samples were placed in a box furnace under ambient atmosphere and heated to temperatures of 820, 840, 860, and 880 C at a rate of 100 C/h, held there for 24 h, followed by cooling at 100 C/h. X-ray diffraction analyses showed that almost all the samples are single phase except NEG-123 processed at 820 C. The average particle size of NEG-123 powders increased with increasing processing temperatures, while that of NEG-211 remained in the same range below 5 μm irrespective of the treatment temperature. Since the particle size of NEG-123 powders was around 10 mm, one need to refine the particle size below 5 μm with a technique like mechanical grinding for the production of high Jc NEG-Ba-Cu-O bulk super conductors. NEG-211 powders will be suitable for such a use in the present form. The homemade powders were used to fabricate NEG-Ba-Cu-O bulk by cold top seeding melt growth with MgO seed following by oxygen annealing treatment. The characterization of bulk demonstrated critical temperature at 65 K with maximum critical current density of 70,000 kA/cm 2 at 10 K with H//c-axis.

LanguageEnglish
Pages1-8
Number of pages8
JournalJournal of Superconductivity and Novel Magnetism
DOIs
StateAccepted/In press - 2016 Jan 28

Fingerprint

Powders
Calcination
roasting
Particle size
Temperature
temperature
grinding
inoculation
Processing
pellets
furnaces
Seed
boxes
seeds
critical current
critical temperature
purity
Furnaces
conductors
Annealing

Keywords

  • Calcination process
  • NEG-Ba-Cu-O
  • Ternary bulk superconductor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

A Study of Calcination Conditions for Synthesizing Fine Particles of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy and (Nd0.33Eu0.33Gd0.33)2BaCuO5 . / Wongsatanawarid, Atikorn; Pinmangkorn, Sunsanee; Wongwises, Somchai; Murakami, Masato.

In: Journal of Superconductivity and Novel Magnetism, 28.01.2016, p. 1-8.

Research output: Contribution to journalArticle

@article{ebb24be0f57349dd90270d54192c2d78,
title = "A Study of Calcination Conditions for Synthesizing Fine Particles of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy and (Nd0.33Eu0.33Gd0.33)2BaCuO5",
abstract = "The calcination temperature was studied for optimum processing conditions for preparing (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy (NEG-123) and (Nd0.33Eu0.33Gd0.33)2BaCuO5 (NEG-211) powders with good quality and fine size. This study used commercially available raw powders of Nd2O3, Eu2O3, Gd2O3, BaO2, and CuO in a purity of 99.9 {\%} with 3–5- μm particle size. These raw powders were carefully weighed to have the compositions of NEG-123 and NEG-211 and pressed into pellets 25 g in weight. The samples were placed in a box furnace under ambient atmosphere and heated to temperatures of 820, 840, 860, and 880 ∘C at a rate of 100 ∘C/h, held there for 24 h, followed by cooling at 100 ∘C/h. X-ray diffraction analyses showed that almost all the samples are single phase except NEG-123 processed at 820 ∘C. The average particle size of NEG-123 powders increased with increasing processing temperatures, while that of NEG-211 remained in the same range below 5 μm irrespective of the treatment temperature. Since the particle size of NEG-123 powders was around 10 mm, one need to refine the particle size below 5 μm with a technique like mechanical grinding for the production of high Jc NEG-Ba-Cu-O bulk super conductors. NEG-211 powders will be suitable for such a use in the present form. The homemade powders were used to fabricate NEG-Ba-Cu-O bulk by cold top seeding melt growth with MgO seed following by oxygen annealing treatment. The characterization of bulk demonstrated critical temperature at 65 K with maximum critical current density of 70,000 kA/cm 2 at 10 K with H//c-axis.",
keywords = "Calcination process, NEG-Ba-Cu-O, Ternary bulk superconductor",
author = "Atikorn Wongsatanawarid and Sunsanee Pinmangkorn and Somchai Wongwises and Masato Murakami",
year = "2016",
month = "1",
day = "28",
doi = "10.1007/s10948-016-3414-5",
language = "English",
pages = "1--8",
journal = "Journal of Superconductivity and Novel Magnetism",
issn = "1557-1939",
publisher = "Springer New York",

}

TY - JOUR

T1 - A Study of Calcination Conditions for Synthesizing Fine Particles of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy and (Nd0.33Eu0.33Gd0.33)2BaCuO5

AU - Wongsatanawarid,Atikorn

AU - Pinmangkorn,Sunsanee

AU - Wongwises,Somchai

AU - Murakami,Masato

PY - 2016/1/28

Y1 - 2016/1/28

N2 - The calcination temperature was studied for optimum processing conditions for preparing (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy (NEG-123) and (Nd0.33Eu0.33Gd0.33)2BaCuO5 (NEG-211) powders with good quality and fine size. This study used commercially available raw powders of Nd2O3, Eu2O3, Gd2O3, BaO2, and CuO in a purity of 99.9 % with 3–5- μm particle size. These raw powders were carefully weighed to have the compositions of NEG-123 and NEG-211 and pressed into pellets 25 g in weight. The samples were placed in a box furnace under ambient atmosphere and heated to temperatures of 820, 840, 860, and 880 ∘C at a rate of 100 ∘C/h, held there for 24 h, followed by cooling at 100 ∘C/h. X-ray diffraction analyses showed that almost all the samples are single phase except NEG-123 processed at 820 ∘C. The average particle size of NEG-123 powders increased with increasing processing temperatures, while that of NEG-211 remained in the same range below 5 μm irrespective of the treatment temperature. Since the particle size of NEG-123 powders was around 10 mm, one need to refine the particle size below 5 μm with a technique like mechanical grinding for the production of high Jc NEG-Ba-Cu-O bulk super conductors. NEG-211 powders will be suitable for such a use in the present form. The homemade powders were used to fabricate NEG-Ba-Cu-O bulk by cold top seeding melt growth with MgO seed following by oxygen annealing treatment. The characterization of bulk demonstrated critical temperature at 65 K with maximum critical current density of 70,000 kA/cm 2 at 10 K with H//c-axis.

AB - The calcination temperature was studied for optimum processing conditions for preparing (Nd0.33Eu0.33Gd0.33) Ba2Cu3Oy (NEG-123) and (Nd0.33Eu0.33Gd0.33)2BaCuO5 (NEG-211) powders with good quality and fine size. This study used commercially available raw powders of Nd2O3, Eu2O3, Gd2O3, BaO2, and CuO in a purity of 99.9 % with 3–5- μm particle size. These raw powders were carefully weighed to have the compositions of NEG-123 and NEG-211 and pressed into pellets 25 g in weight. The samples were placed in a box furnace under ambient atmosphere and heated to temperatures of 820, 840, 860, and 880 ∘C at a rate of 100 ∘C/h, held there for 24 h, followed by cooling at 100 ∘C/h. X-ray diffraction analyses showed that almost all the samples are single phase except NEG-123 processed at 820 ∘C. The average particle size of NEG-123 powders increased with increasing processing temperatures, while that of NEG-211 remained in the same range below 5 μm irrespective of the treatment temperature. Since the particle size of NEG-123 powders was around 10 mm, one need to refine the particle size below 5 μm with a technique like mechanical grinding for the production of high Jc NEG-Ba-Cu-O bulk super conductors. NEG-211 powders will be suitable for such a use in the present form. The homemade powders were used to fabricate NEG-Ba-Cu-O bulk by cold top seeding melt growth with MgO seed following by oxygen annealing treatment. The characterization of bulk demonstrated critical temperature at 65 K with maximum critical current density of 70,000 kA/cm 2 at 10 K with H//c-axis.

KW - Calcination process

KW - NEG-Ba-Cu-O

KW - Ternary bulk superconductor

UR - http://www.scopus.com/inward/record.url?scp=84955600156&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84955600156&partnerID=8YFLogxK

U2 - 10.1007/s10948-016-3414-5

DO - 10.1007/s10948-016-3414-5

M3 - Article

SP - 1

EP - 8

JO - Journal of Superconductivity and Novel Magnetism

T2 - Journal of Superconductivity and Novel Magnetism

JF - Journal of Superconductivity and Novel Magnetism

SN - 1557-1939

ER -