Adaptive control for the systems preceded by hysteresis

Xinkai Chen, Chun Yi Su, Toshio Fukuda

Research output: Contribution to journalArticlepeer-review

97 Citations (Scopus)

Abstract

Hysteresis hinders the effectiveness of smart materials in sensors and actuators. It is a challenging task to control the systems with hysteresis. This note discusses the adaptive control for discrete time linear dynamical systems preceded with hysteresis described by the Prandtl-Ishlinskii model. The time delay and the order of the linear dynamical system are assumed to be known. The contribution of the note is the fusion of the hysteresis model with adaptive control techniques without constructing the inverse hysteresis nonlinearity. Only the parameters (which are generated from the parameters of the linear system and the density function of the hysteresis) directly needed in the formulation of the controller are adaptively estimated online. The proposed control law ensures the global stability of the closed-loop system, and the output tracking error can be controlled to be as small as required by choosing the design parameters. Simulation results show the effectiveness of the proposed algorithm.

Original languageEnglish
Pages (from-to)1019-1025
Number of pages7
JournalIEEE Transactions on Automatic Control
Volume53
Issue number4
DOIs
Publication statusPublished - 2008 May 1

Keywords

  • Adaptive control
  • Discrete time linear systems
  • Hysteresis
  • Prandtl-Ishlinskii model

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Adaptive control for the systems preceded by hysteresis'. Together they form a unique fingerprint.

Cite this