An SiO2 film deposition technology using tetraethylorthosilicate and ozone for interlayer metal dielectrics

Akira Kubo, Tetsuya Homma, Yukinobu Murao

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

A void-free SiO2 interlayer dielectric film formation technology has been developed. This technology utilizes tetraethylorthosilicate [TEOS, Si(OC2H5)4]/ozone (O3) atmospheric pressure chemical vapor deposition (APCVD) SiO2 film gap-filling, and the TEOS-based dual frequency plasma enhanced vapor deposition (PECVD) SiO2 film as an underlayer of TEOS/O3 APCVD SiO2 film. This technology enables the formation of void-free SiO2 interlayer dielectric films without any pretreatment for the underlayer between aluminum wirings line and space of 600 and 600 nm, respectively. Single-frequency PECVD SiO2 films are also applied as an underlayer of TEOS/O3 APCVD SiO2 gap-filling. However, void-free gap-filling cannot be achieved, even using the single frequency PECVD SiO2 underlayer. To clarify the mechanism of the void-free gap-filling, the underlayer PECVD SiO2 film properties are investigated. The SiO2 film density at the Al wiring pattern's sidewall of the dual-frequency PECVD SiO2 films is equal to that at the pattern's bottom, while the density at the pattern's sidewall formed using single-frequency PECVD SiO2 films is lower than that at the pattern's bottom. The carbon concentration for the dual-frequency PECVD SiO2 films is lower than that for the single-frequency PECVD SiO2 films. The H2O and acetaldehyde (CH3CHO) detected from the dual-frequency PECVD SiO2 films due to the oxidation of the ethoxy group, is much more than that from the single-frequency PECVD SiO2 films. Based on the experimental results, the mechanism of void-free gap-filling of TEOS/O3 APCVD SiO2 films is considered to consist of three steps; (i) involving R ions (R, alkyl group) into the PECVD SiO2 films during film deposition, (ii) Si-OR bonds formation at the PECVD SiO2 films' surface, and (iii) oligomers flow at TEOS/O3 APCVD SiO2 film deposition. It is considered that the oligomers flow is promoted by the Si-OR bonds, resulting in the void-free gap-filling. The dual-frequency PECVD SiO2 films can improve the gap-filling of TEOS/O3 APCVD SiO2 films.

Original languageEnglish
Pages (from-to)1769-1773
Number of pages5
JournalJournal of the Electrochemical Society
Volume143
Issue number5
Publication statusPublished - 1996 May
Externally publishedYes

Fingerprint

Ozone
ozone
interlayers
Vapor deposition
Metals
vapor deposition
plasma frequencies
metals
Plasmas
Atmospheric pressure
Chemical vapor deposition
voids
atmospheric pressure
tetraethoxysilane
Dielectric films
Electric wiring
wiring
Oligomers
oligomers
Acetaldehyde

ASJC Scopus subject areas

  • Electrochemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

Cite this

An SiO2 film deposition technology using tetraethylorthosilicate and ozone for interlayer metal dielectrics. / Kubo, Akira; Homma, Tetsuya; Murao, Yukinobu.

In: Journal of the Electrochemical Society, Vol. 143, No. 5, 05.1996, p. 1769-1773.

Research output: Contribution to journalArticle

@article{cddb3c30f9504b219091bbc7456740d1,
title = "An SiO2 film deposition technology using tetraethylorthosilicate and ozone for interlayer metal dielectrics",
abstract = "A void-free SiO2 interlayer dielectric film formation technology has been developed. This technology utilizes tetraethylorthosilicate [TEOS, Si(OC2H5)4]/ozone (O3) atmospheric pressure chemical vapor deposition (APCVD) SiO2 film gap-filling, and the TEOS-based dual frequency plasma enhanced vapor deposition (PECVD) SiO2 film as an underlayer of TEOS/O3 APCVD SiO2 film. This technology enables the formation of void-free SiO2 interlayer dielectric films without any pretreatment for the underlayer between aluminum wirings line and space of 600 and 600 nm, respectively. Single-frequency PECVD SiO2 films are also applied as an underlayer of TEOS/O3 APCVD SiO2 gap-filling. However, void-free gap-filling cannot be achieved, even using the single frequency PECVD SiO2 underlayer. To clarify the mechanism of the void-free gap-filling, the underlayer PECVD SiO2 film properties are investigated. The SiO2 film density at the Al wiring pattern's sidewall of the dual-frequency PECVD SiO2 films is equal to that at the pattern's bottom, while the density at the pattern's sidewall formed using single-frequency PECVD SiO2 films is lower than that at the pattern's bottom. The carbon concentration for the dual-frequency PECVD SiO2 films is lower than that for the single-frequency PECVD SiO2 films. The H2O and acetaldehyde (CH3CHO) detected from the dual-frequency PECVD SiO2 films due to the oxidation of the ethoxy group, is much more than that from the single-frequency PECVD SiO2 films. Based on the experimental results, the mechanism of void-free gap-filling of TEOS/O3 APCVD SiO2 films is considered to consist of three steps; (i) involving R ions (R, alkyl group) into the PECVD SiO2 films during film deposition, (ii) Si-OR bonds formation at the PECVD SiO2 films' surface, and (iii) oligomers flow at TEOS/O3 APCVD SiO2 film deposition. It is considered that the oligomers flow is promoted by the Si-OR bonds, resulting in the void-free gap-filling. The dual-frequency PECVD SiO2 films can improve the gap-filling of TEOS/O3 APCVD SiO2 films.",
author = "Akira Kubo and Tetsuya Homma and Yukinobu Murao",
year = "1996",
month = "5",
language = "English",
volume = "143",
pages = "1769--1773",
journal = "Journal of the Electrochemical Society",
issn = "0013-4651",
publisher = "Electrochemical Society, Inc.",
number = "5",

}

TY - JOUR

T1 - An SiO2 film deposition technology using tetraethylorthosilicate and ozone for interlayer metal dielectrics

AU - Kubo, Akira

AU - Homma, Tetsuya

AU - Murao, Yukinobu

PY - 1996/5

Y1 - 1996/5

N2 - A void-free SiO2 interlayer dielectric film formation technology has been developed. This technology utilizes tetraethylorthosilicate [TEOS, Si(OC2H5)4]/ozone (O3) atmospheric pressure chemical vapor deposition (APCVD) SiO2 film gap-filling, and the TEOS-based dual frequency plasma enhanced vapor deposition (PECVD) SiO2 film as an underlayer of TEOS/O3 APCVD SiO2 film. This technology enables the formation of void-free SiO2 interlayer dielectric films without any pretreatment for the underlayer between aluminum wirings line and space of 600 and 600 nm, respectively. Single-frequency PECVD SiO2 films are also applied as an underlayer of TEOS/O3 APCVD SiO2 gap-filling. However, void-free gap-filling cannot be achieved, even using the single frequency PECVD SiO2 underlayer. To clarify the mechanism of the void-free gap-filling, the underlayer PECVD SiO2 film properties are investigated. The SiO2 film density at the Al wiring pattern's sidewall of the dual-frequency PECVD SiO2 films is equal to that at the pattern's bottom, while the density at the pattern's sidewall formed using single-frequency PECVD SiO2 films is lower than that at the pattern's bottom. The carbon concentration for the dual-frequency PECVD SiO2 films is lower than that for the single-frequency PECVD SiO2 films. The H2O and acetaldehyde (CH3CHO) detected from the dual-frequency PECVD SiO2 films due to the oxidation of the ethoxy group, is much more than that from the single-frequency PECVD SiO2 films. Based on the experimental results, the mechanism of void-free gap-filling of TEOS/O3 APCVD SiO2 films is considered to consist of three steps; (i) involving R ions (R, alkyl group) into the PECVD SiO2 films during film deposition, (ii) Si-OR bonds formation at the PECVD SiO2 films' surface, and (iii) oligomers flow at TEOS/O3 APCVD SiO2 film deposition. It is considered that the oligomers flow is promoted by the Si-OR bonds, resulting in the void-free gap-filling. The dual-frequency PECVD SiO2 films can improve the gap-filling of TEOS/O3 APCVD SiO2 films.

AB - A void-free SiO2 interlayer dielectric film formation technology has been developed. This technology utilizes tetraethylorthosilicate [TEOS, Si(OC2H5)4]/ozone (O3) atmospheric pressure chemical vapor deposition (APCVD) SiO2 film gap-filling, and the TEOS-based dual frequency plasma enhanced vapor deposition (PECVD) SiO2 film as an underlayer of TEOS/O3 APCVD SiO2 film. This technology enables the formation of void-free SiO2 interlayer dielectric films without any pretreatment for the underlayer between aluminum wirings line and space of 600 and 600 nm, respectively. Single-frequency PECVD SiO2 films are also applied as an underlayer of TEOS/O3 APCVD SiO2 gap-filling. However, void-free gap-filling cannot be achieved, even using the single frequency PECVD SiO2 underlayer. To clarify the mechanism of the void-free gap-filling, the underlayer PECVD SiO2 film properties are investigated. The SiO2 film density at the Al wiring pattern's sidewall of the dual-frequency PECVD SiO2 films is equal to that at the pattern's bottom, while the density at the pattern's sidewall formed using single-frequency PECVD SiO2 films is lower than that at the pattern's bottom. The carbon concentration for the dual-frequency PECVD SiO2 films is lower than that for the single-frequency PECVD SiO2 films. The H2O and acetaldehyde (CH3CHO) detected from the dual-frequency PECVD SiO2 films due to the oxidation of the ethoxy group, is much more than that from the single-frequency PECVD SiO2 films. Based on the experimental results, the mechanism of void-free gap-filling of TEOS/O3 APCVD SiO2 films is considered to consist of three steps; (i) involving R ions (R, alkyl group) into the PECVD SiO2 films during film deposition, (ii) Si-OR bonds formation at the PECVD SiO2 films' surface, and (iii) oligomers flow at TEOS/O3 APCVD SiO2 film deposition. It is considered that the oligomers flow is promoted by the Si-OR bonds, resulting in the void-free gap-filling. The dual-frequency PECVD SiO2 films can improve the gap-filling of TEOS/O3 APCVD SiO2 films.

UR - http://www.scopus.com/inward/record.url?scp=0030142749&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030142749&partnerID=8YFLogxK

M3 - Article

VL - 143

SP - 1769

EP - 1773

JO - Journal of the Electrochemical Society

JF - Journal of the Electrochemical Society

SN - 0013-4651

IS - 5

ER -