Carbonation progress mechanism of cement containing different amounts of powder admixtures

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The cement industry is also reducing carbon dioxide emissions to pre- vent the global warming. As one of the methods, the use of many powder admixtures are considered. While the use of admixtures is highly advantageous in various terms of durability, it is known that carbonation resistance is inferior when compared to ordinary Portland cement. In this study, we investigated the progress mechanism of carbonation using cement with high content of powder admixtures. First, we compared the progress of carbonation in the real environment and accelerated environment. As a result, it was confirmed that, although carbonation is delayed in a real environment, the progress of carbonation is quicker than when not using large amount of admixtures. The effect is more remarkable as the curing period decrease, and it is found that it has correlation with the compressive strength. Next, the progress of carbonation was considered to be influenced by the pH and the hydrate products of the sample. The pH and hydrate and carbonate products were evaluated quantitatively at depth positions from the surface before and after carbonation. As a result, it was confirmed that the carbonation depth increased as the pH was lowered by the high content of the admixture, and the calcium hydroxide is converted to calcium carbonate. It was also confirmed that the type of calcium carbonate produced was different. Furthermore, with the change of the pore structure, the tendency of carbonation to accelerate was also recognized. On the other hand, it was also confirmed that the carbonation depth identified by the phenolphthalein solution was different from the actual formation position of calcium carbonate.

Original languageEnglish
Title of host publicationEASEC16 - Proceedings of the 16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019
EditorsChien Ming Wang, Sritawat Kitipornchai, Vinh Dao
PublisherSpringer Science and Business Media Deutschland GmbH
Pages1933-1943
Number of pages11
ISBN (Print)9789811580789
DOIs
Publication statusPublished - 2021
Event16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019 - Brisbane, Australia
Duration: 2019 Dec 32019 Dec 6

Publication series

NameLecture Notes in Civil Engineering
Volume101
ISSN (Print)2366-2557
ISSN (Electronic)2366-2565

Conference

Conference16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019
Country/TerritoryAustralia
CityBrisbane
Period19/12/319/12/6

Keywords

  • Blast furnace slag
  • Calcium hydrate Calcium carbonate
  • Carbonation
  • Fly-ash

ASJC Scopus subject areas

  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Carbonation progress mechanism of cement containing different amounts of powder admixtures'. Together they form a unique fingerprint.

Cite this