Chern subrings

Masaki Kameko, Nobuaki Yagita

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Let p be an odd prime. We show that for a simply connected semisimple complex linear algebraic group, if its integral homology has ptorsion, the Chern classes do not generate the Chow ring of its classifying space.

Original languageEnglish
Pages (from-to)367-373
Number of pages7
JournalProceedings of the American Mathematical Society
Volume138
Issue number1
Publication statusPublished - 2010 Jan
Externally publishedYes

Keywords

  • Chern class
  • Chow ring
  • Classifying space
  • Motivic cohomology

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Chern subrings. / Kameko, Masaki; Yagita, Nobuaki.

In: Proceedings of the American Mathematical Society, Vol. 138, No. 1, 01.2010, p. 367-373.

Research output: Contribution to journalArticle

Kameko, M & Yagita, N 2010, 'Chern subrings', Proceedings of the American Mathematical Society, vol. 138, no. 1, pp. 367-373.
Kameko, Masaki ; Yagita, Nobuaki. / Chern subrings. In: Proceedings of the American Mathematical Society. 2010 ; Vol. 138, No. 1. pp. 367-373.
@article{0da74fa9180948928b10320fed42422e,
title = "Chern subrings",
abstract = "Let p be an odd prime. We show that for a simply connected semisimple complex linear algebraic group, if its integral homology has ptorsion, the Chern classes do not generate the Chow ring of its classifying space.",
keywords = "Chern class, Chow ring, Classifying space, Motivic cohomology",
author = "Masaki Kameko and Nobuaki Yagita",
year = "2010",
month = "1",
language = "English",
volume = "138",
pages = "367--373",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "1",

}

TY - JOUR

T1 - Chern subrings

AU - Kameko, Masaki

AU - Yagita, Nobuaki

PY - 2010/1

Y1 - 2010/1

N2 - Let p be an odd prime. We show that for a simply connected semisimple complex linear algebraic group, if its integral homology has ptorsion, the Chern classes do not generate the Chow ring of its classifying space.

AB - Let p be an odd prime. We show that for a simply connected semisimple complex linear algebraic group, if its integral homology has ptorsion, the Chern classes do not generate the Chow ring of its classifying space.

KW - Chern class

KW - Chow ring

KW - Classifying space

KW - Motivic cohomology

UR - http://www.scopus.com/inward/record.url?scp=77951440496&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951440496&partnerID=8YFLogxK

M3 - Article

VL - 138

SP - 367

EP - 373

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 1

ER -