Consensus algorithms for multi-agent systems

A matrix inequality based approach

Guisheng Zhai, Shohei Okuno, Joe Imae, Tomoaki Kobayashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

In this paper, we study a consensus problem for multi-agent systems, where the entire system is decentralized in the sense that each agent can only obtain information (states or outputs) from its neighbor agents. Existing approaches in the literature are mostly based on graph Laplacian of the graph which describes the interconnection structure among the agents, and such methods can not deal with complicated control specification. For this purpose, we propose to reduce the consensus problem on hand to solving a strict matrix inequality with respect to a Lyapunov matrix and a controller gain matrix, and then propose two algorithms for solving the matrix inequality. It turns out that our approach includes the existing Laplacian based approach as a special case, and can deal with various additional control requirements such as convergence rate specification and actuator limitations.

Original languageEnglish
Title of host publicationProceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009
Pages891-896
Number of pages6
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009 - Okayama
Duration: 2009 Mar 262009 Mar 29

Other

Other2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009
CityOkayama
Period09/3/2609/3/29

Fingerprint

Multi agent systems
Specifications
Actuators
Controllers

Keywords

  • Consensus
  • Decentralized state (output) feedback
  • Graph laplacian
  • Homotopy
  • LMI
  • Matrix inequality
  • Multi-agent systems

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Cite this

Zhai, G., Okuno, S., Imae, J., & Kobayashi, T. (2009). Consensus algorithms for multi-agent systems: A matrix inequality based approach. In Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009 (pp. 891-896). [4919398] https://doi.org/10.1109/ICNSC.2009.4919398

Consensus algorithms for multi-agent systems : A matrix inequality based approach. / Zhai, Guisheng; Okuno, Shohei; Imae, Joe; Kobayashi, Tomoaki.

Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009. 2009. p. 891-896 4919398.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhai, G, Okuno, S, Imae, J & Kobayashi, T 2009, Consensus algorithms for multi-agent systems: A matrix inequality based approach. in Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009., 4919398, pp. 891-896, 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009, Okayama, 09/3/26. https://doi.org/10.1109/ICNSC.2009.4919398
Zhai G, Okuno S, Imae J, Kobayashi T. Consensus algorithms for multi-agent systems: A matrix inequality based approach. In Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009. 2009. p. 891-896. 4919398 https://doi.org/10.1109/ICNSC.2009.4919398
Zhai, Guisheng ; Okuno, Shohei ; Imae, Joe ; Kobayashi, Tomoaki. / Consensus algorithms for multi-agent systems : A matrix inequality based approach. Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009. 2009. pp. 891-896
@inproceedings{da89bb3dbf4b4d4a9502f03c2d423d5a,
title = "Consensus algorithms for multi-agent systems: A matrix inequality based approach",
abstract = "In this paper, we study a consensus problem for multi-agent systems, where the entire system is decentralized in the sense that each agent can only obtain information (states or outputs) from its neighbor agents. Existing approaches in the literature are mostly based on graph Laplacian of the graph which describes the interconnection structure among the agents, and such methods can not deal with complicated control specification. For this purpose, we propose to reduce the consensus problem on hand to solving a strict matrix inequality with respect to a Lyapunov matrix and a controller gain matrix, and then propose two algorithms for solving the matrix inequality. It turns out that our approach includes the existing Laplacian based approach as a special case, and can deal with various additional control requirements such as convergence rate specification and actuator limitations.",
keywords = "Consensus, Decentralized state (output) feedback, Graph laplacian, Homotopy, LMI, Matrix inequality, Multi-agent systems",
author = "Guisheng Zhai and Shohei Okuno and Joe Imae and Tomoaki Kobayashi",
year = "2009",
doi = "10.1109/ICNSC.2009.4919398",
language = "English",
isbn = "9781424434923",
pages = "891--896",
booktitle = "Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009",

}

TY - GEN

T1 - Consensus algorithms for multi-agent systems

T2 - A matrix inequality based approach

AU - Zhai, Guisheng

AU - Okuno, Shohei

AU - Imae, Joe

AU - Kobayashi, Tomoaki

PY - 2009

Y1 - 2009

N2 - In this paper, we study a consensus problem for multi-agent systems, where the entire system is decentralized in the sense that each agent can only obtain information (states or outputs) from its neighbor agents. Existing approaches in the literature are mostly based on graph Laplacian of the graph which describes the interconnection structure among the agents, and such methods can not deal with complicated control specification. For this purpose, we propose to reduce the consensus problem on hand to solving a strict matrix inequality with respect to a Lyapunov matrix and a controller gain matrix, and then propose two algorithms for solving the matrix inequality. It turns out that our approach includes the existing Laplacian based approach as a special case, and can deal with various additional control requirements such as convergence rate specification and actuator limitations.

AB - In this paper, we study a consensus problem for multi-agent systems, where the entire system is decentralized in the sense that each agent can only obtain information (states or outputs) from its neighbor agents. Existing approaches in the literature are mostly based on graph Laplacian of the graph which describes the interconnection structure among the agents, and such methods can not deal with complicated control specification. For this purpose, we propose to reduce the consensus problem on hand to solving a strict matrix inequality with respect to a Lyapunov matrix and a controller gain matrix, and then propose two algorithms for solving the matrix inequality. It turns out that our approach includes the existing Laplacian based approach as a special case, and can deal with various additional control requirements such as convergence rate specification and actuator limitations.

KW - Consensus

KW - Decentralized state (output) feedback

KW - Graph laplacian

KW - Homotopy

KW - LMI

KW - Matrix inequality

KW - Multi-agent systems

UR - http://www.scopus.com/inward/record.url?scp=70349109623&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349109623&partnerID=8YFLogxK

U2 - 10.1109/ICNSC.2009.4919398

DO - 10.1109/ICNSC.2009.4919398

M3 - Conference contribution

SN - 9781424434923

SP - 891

EP - 896

BT - Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009

ER -