Critical nonequilibrium cluster-flip relaxations in ising models

Yusuke Tomita, Yoshihiko Nonomura

Research output: Contribution to journalArticlepeer-review


We investigate nonequilibrium relaxations of Ising models at the critical point by using a cluster update. While preceding studies imply that nonequilibrium cluster-flip dynamics at the critical point are universally described by the stretched-exponential function, we find that the dynamics changes from the stretched-exponential to the power function as the dimensionality is increased: The two-, three-, four-, and infinite-dimensional Ising models are numerically studied, and the fourand infinite-dimensional Ising models exhibit the power-law relaxation. We also show that the finitesize scaling analysis using the normalized correlation length is markedly effective for the analysis of relaxational processes rather than the direct use of the Monte Carlo step.

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - 2018 Aug 22

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Critical nonequilibrium cluster-flip relaxations in ising models'. Together they form a unique fingerprint.

Cite this