Abstract
We report an optical degradation of an InGaN/AlGaN double-heterostructure light-emitting diode (LED) on a sapphire substrate grown by metallorganic chemical vapor deposition. The InGaN/AlGaN LED exhibited an optical output power of 0.17 mW, external quantum efficiency of 0.2 %, and the peak emitting spectrum at 437 nm with full width at half-maximum of 63 nm under 30 mA dc operation at 300 K. The InGaN/AlGaN LED showed the optical degradation under high injected current density. Electroluminescence, electron-beam induced current and cathodoluminescence observations show that the degraded InGaN/AlGaN LED exhibits formation and propagation of dark spots and a crescent-shaped dark patch, which act as nonradiative recombination centers. The values of degradation rate under injected current density of 0.1 kA/cm2 were determined to be 1.1 × 10-3, 1.9 × 10-3 and 3.9 × 10-3 h-1 at ambient temperatures of 30, 50 and 80°C, respectively. The activation energy of degradation was also determined to be 0.23 eV.
Original language | English |
---|---|
Pages (from-to) | 1191-1196 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 449 |
Publication status | Published - 1997 Jan 1 |
Externally published | Yes |
Event | Proceedings of the 1996 MRS Fall Symposium - Boston, MA, USA Duration: 1996 Dec 2 → 1996 Dec 6 |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering