Denominators of Egyptian fractions

Hisashi Yokota

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Let D(a,N) = min{nk: a N = Σ1k 1 ni, n1 < n2 < ... < nk, ni ε{lunate} Z0}, where the minimum ranges over all expansions of a N, and let D(N) = max{D(a,N): 1 ≤ a < N}. Then D(N) N ≤ (logN) 3 2+ε{lunate}, where ε{lunate} →0 as N → ∞, improving the result of M.N. Bleicher and P. Erdös.

Original languageEnglish
Pages (from-to)258-271
Number of pages14
JournalJournal of Number Theory
Volume28
Issue number3
DOIs
Publication statusPublished - 1988 Mar

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint Dive into the research topics of 'Denominators of Egyptian fractions'. Together they form a unique fingerprint.

  • Cite this