Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer

Yasuo Yoshimi, Akisato Narimatsu, Keisuke Nakayama, Shinichi Sekine, Koji Hattori, Kiyotaka Sakai

Research output: Contribution to journalArticle

29 Citations (Scopus)


The instability of enzymatic glucose sensors has prevented the development of a practical artificial pancreas for diabetic patients. We therefore developed an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer (MIP). This sensor has the advantages of improved stability and a simplified manufacturing procedure. An adduct of glucose and 4-vinylphenylboronic acid (VPBA) was synthesized by esterification and was then purified. The copolymer of the glucose/VPBA adduct and methylene bisacrylamide was grafted onto an indium tin oxide electrode surface. Glucose was washed out from the copolymer to obtain an MIP layer. Cyclic voltammetry of ferrocyanide in aqueous solution was performed using an MIP-grafted electrode, and the effect of glucose on the anodic current intensity was evaluated. The anodic current intensity was sensitive to the glucose concentration, and the dynamic range (0-900 mg/dl) covered the typical range of diabetic blood glucose levels. The response time of the MIP-grafted electrode to a stepwise change in the glucose concentration was approximately 3-5 min. Thus, we can conclude that, by taking advantage of its gate effect, it is feasible to use an MIP-grafted electrode as a glucose sensor for monitoring blood sugar in diabetic patients.

Original languageEnglish
Pages (from-to)264-270
Number of pages7
JournalJournal of Artificial Organs
Issue number4
Publication statusPublished - 2009 Dec 1



  • Boronic acid
  • Gate effect
  • Glucose sensor
  • Molecularly imprinted polymer

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering
  • Cardiology and Cardiovascular Medicine

Cite this