Abstract
We have fabricated Cu-based micropatterns in an ambient environment using femtosecond laser direct writing to reduce a glyoxylic acid Cu complex spin-coated onto a glass substrate. To do this, we scanned a train of focused femtosecond laser pulses over the complex film in air, following which the non-irradiated complex was removed by rinsing the substrates with ethanol. A minimum line width of 6.1 μm was obtained at a laser-pulse energy of 0.156 nJ and scanning speeds of 500 and 1000 μm/s. This line width is significantly smaller than that obtained in previous work using a CO2 laser. In addition, the lines are electrically conducting. However, the minimum resistivity of the line pattern was 2.43 × 10-6 Ωm, which is ~10 times greater than that of the pattern formed using the CO2 laser. An X-ray diffraction analysis suggests that the balance between reduction and re-oxidation of the glyoxylic acid Cu complex determines the nature of the highly reduced Cu patterns in the ambient air.
Original language | English |
---|---|
Article number | 401 |
Journal | Micromachines |
Volume | 10 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2019 Jun 1 |
Keywords
- Cu micropattern
- Femtosecond laser
- Glyoxylic acid Cu complex
- Laser direct writing
- Reduction
ASJC Scopus subject areas
- Control and Systems Engineering
- Mechanical Engineering
- Electrical and Electronic Engineering