Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes

MP2/cc-pV5Z calculations of H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes

Seiji Tsuzuki, Tadafumi Uchimaru, Kazunari Matsumura, Masuhiro Mikami, Kazutoshi Tanabe

Research output: Contribution to journalArticle

120 Citations (Scopus)

Abstract

The MP2 intermolecular interaction energies of the title complexes were calculated with the Dunning's correlation consistent basis sets (cc-pVXZ, X=D, T, Q, and 5) and the interaction energies at the basis set limit were estimated. The second-order Møller-Plesset (MP2) interaction energies greatly depend on the basis sets used, while the Hartree-Fock (HF) energies do not. Small basis sets considerably underestimate the attractive interaction. The coupled cluster single double triple [CCSD(T)] interaction energies are close to the MP2 ones. The expected CCSD(T) interaction energies of the H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes at the basis set limit are -4.90, -5.51, -5.17, -5.45, and -13.93 kcal/mol, respectively, while the HF/cc-pV5Z energies are -3.15, -2.58, -3.60, -2.69, and -11.29 kcal/ mol, respectively. The HF calculations greatly underestimate the attractive energies and fail to predict the order of the bonding energies in these complexes. These results show that a large basis set and the consideration of an appropriate electron correlation correction are essential to study interactions of hydrogen bonding complexes by ab initio molecular orbital calculation.

Original languageEnglish
Pages (from-to)11906-11910
Number of pages5
JournalJournal of Chemical Physics
Volume110
Issue number24
Publication statusPublished - 1999 Jun 22
Externally publishedYes

Fingerprint

Electron correlations
Orbital calculations
Molecular orbitals
Hydrogen bonds
hydrogen
electrons
interactions
energy
molecular orbitals

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes : MP2/cc-pV5Z calculations of H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes. / Tsuzuki, Seiji; Uchimaru, Tadafumi; Matsumura, Kazunari; Mikami, Masuhiro; Tanabe, Kazutoshi.

In: Journal of Chemical Physics, Vol. 110, No. 24, 22.06.1999, p. 11906-11910.

Research output: Contribution to journalArticle

@article{864a4ec3606340ea81cab86f059e9b32,
title = "Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes: MP2/cc-pV5Z calculations of H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes",
abstract = "The MP2 intermolecular interaction energies of the title complexes were calculated with the Dunning's correlation consistent basis sets (cc-pVXZ, X=D, T, Q, and 5) and the interaction energies at the basis set limit were estimated. The second-order M{\o}ller-Plesset (MP2) interaction energies greatly depend on the basis sets used, while the Hartree-Fock (HF) energies do not. Small basis sets considerably underestimate the attractive interaction. The coupled cluster single double triple [CCSD(T)] interaction energies are close to the MP2 ones. The expected CCSD(T) interaction energies of the H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes at the basis set limit are -4.90, -5.51, -5.17, -5.45, and -13.93 kcal/mol, respectively, while the HF/cc-pV5Z energies are -3.15, -2.58, -3.60, -2.69, and -11.29 kcal/ mol, respectively. The HF calculations greatly underestimate the attractive energies and fail to predict the order of the bonding energies in these complexes. These results show that a large basis set and the consideration of an appropriate electron correlation correction are essential to study interactions of hydrogen bonding complexes by ab initio molecular orbital calculation.",
author = "Seiji Tsuzuki and Tadafumi Uchimaru and Kazunari Matsumura and Masuhiro Mikami and Kazutoshi Tanabe",
year = "1999",
month = "6",
day = "22",
language = "English",
volume = "110",
pages = "11906--11910",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "24",

}

TY - JOUR

T1 - Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes

T2 - MP2/cc-pV5Z calculations of H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes

AU - Tsuzuki, Seiji

AU - Uchimaru, Tadafumi

AU - Matsumura, Kazunari

AU - Mikami, Masuhiro

AU - Tanabe, Kazutoshi

PY - 1999/6/22

Y1 - 1999/6/22

N2 - The MP2 intermolecular interaction energies of the title complexes were calculated with the Dunning's correlation consistent basis sets (cc-pVXZ, X=D, T, Q, and 5) and the interaction energies at the basis set limit were estimated. The second-order Møller-Plesset (MP2) interaction energies greatly depend on the basis sets used, while the Hartree-Fock (HF) energies do not. Small basis sets considerably underestimate the attractive interaction. The coupled cluster single double triple [CCSD(T)] interaction energies are close to the MP2 ones. The expected CCSD(T) interaction energies of the H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes at the basis set limit are -4.90, -5.51, -5.17, -5.45, and -13.93 kcal/mol, respectively, while the HF/cc-pV5Z energies are -3.15, -2.58, -3.60, -2.69, and -11.29 kcal/ mol, respectively. The HF calculations greatly underestimate the attractive energies and fail to predict the order of the bonding energies in these complexes. These results show that a large basis set and the consideration of an appropriate electron correlation correction are essential to study interactions of hydrogen bonding complexes by ab initio molecular orbital calculation.

AB - The MP2 intermolecular interaction energies of the title complexes were calculated with the Dunning's correlation consistent basis sets (cc-pVXZ, X=D, T, Q, and 5) and the interaction energies at the basis set limit were estimated. The second-order Møller-Plesset (MP2) interaction energies greatly depend on the basis sets used, while the Hartree-Fock (HF) energies do not. Small basis sets considerably underestimate the attractive interaction. The coupled cluster single double triple [CCSD(T)] interaction energies are close to the MP2 ones. The expected CCSD(T) interaction energies of the H2O-MeOH, H2O-Me2O, H2O-H2CO, MeOH-MeOH, and HCOOH-HCOOH complexes at the basis set limit are -4.90, -5.51, -5.17, -5.45, and -13.93 kcal/mol, respectively, while the HF/cc-pV5Z energies are -3.15, -2.58, -3.60, -2.69, and -11.29 kcal/ mol, respectively. The HF calculations greatly underestimate the attractive energies and fail to predict the order of the bonding energies in these complexes. These results show that a large basis set and the consideration of an appropriate electron correlation correction are essential to study interactions of hydrogen bonding complexes by ab initio molecular orbital calculation.

UR - http://www.scopus.com/inward/record.url?scp=0000561334&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000561334&partnerID=8YFLogxK

M3 - Article

VL - 110

SP - 11906

EP - 11910

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 24

ER -