Effects of long-term bed rest on H-reflex and motor evoked potential in lower leg muscles during standing.

K. Yamanaka, Shinichirou Yamamoto, K. Nakazawa, H. Yano, Y. Suzuki, T. Fukunaga

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Maximal H-reflex amplitude (Hmax) compared with maximal M-response (Mmax) has been generally used to assess the efficacy of the monosynaptic transmission from Ia afferents to alpha motoneurons in spinal cord. In previous studies, it has been demonstrated that H-reflex in soleus muscle (SOL) is inhibited during free standing due to an increase in presynaptic inhibition of the Ia afferent terminals to SOL motoneurones (Katz et al. 1988, Koceja et al. 1993). Transcranial magnetic stimulation (TMS) of human motor cortex excites the corticospinal system monosynapticaly connecting to spinal alpha motoneurones. However, it is not clear whether or not the motor evoked potentials (MEPs) in SOL and tibialis anterior (TA) muscles induced by TMS are modulated during standing (Ackermann et al. 1991, Lavoie et al. 1995). Considering that postural control functions change with exposure to weightlessness, we supposed that the excitability of SOL and TA spinal motoneurons from Ia afferents and/or corticospinal tracts during free standing would change after long-term bed rest (BR). The aim of this study was to investigate the effect of BR on H-reflex and MEP in SOL and TA during free standing.

Original languageEnglish
JournalJournal of gravitational physiology : a journal of the International Society for Gravitational Physiology
Volume6
Issue number1
Publication statusPublished - 1999
Externally publishedYes

Cite this

@article{971ad2ee489d46d6b6dfff6d8a09e6a4,
title = "Effects of long-term bed rest on H-reflex and motor evoked potential in lower leg muscles during standing.",
abstract = "Maximal H-reflex amplitude (Hmax) compared with maximal M-response (Mmax) has been generally used to assess the efficacy of the monosynaptic transmission from Ia afferents to alpha motoneurons in spinal cord. In previous studies, it has been demonstrated that H-reflex in soleus muscle (SOL) is inhibited during free standing due to an increase in presynaptic inhibition of the Ia afferent terminals to SOL motoneurones (Katz et al. 1988, Koceja et al. 1993). Transcranial magnetic stimulation (TMS) of human motor cortex excites the corticospinal system monosynapticaly connecting to spinal alpha motoneurones. However, it is not clear whether or not the motor evoked potentials (MEPs) in SOL and tibialis anterior (TA) muscles induced by TMS are modulated during standing (Ackermann et al. 1991, Lavoie et al. 1995). Considering that postural control functions change with exposure to weightlessness, we supposed that the excitability of SOL and TA spinal motoneurons from Ia afferents and/or corticospinal tracts during free standing would change after long-term bed rest (BR). The aim of this study was to investigate the effect of BR on H-reflex and MEP in SOL and TA during free standing.",
author = "K. Yamanaka and Shinichirou Yamamoto and K. Nakazawa and H. Yano and Y. Suzuki and T. Fukunaga",
year = "1999",
language = "English",
volume = "6",
journal = "Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology",
issn = "1077-9248",
publisher = "Galileo Foundation",
number = "1",

}

TY - JOUR

T1 - Effects of long-term bed rest on H-reflex and motor evoked potential in lower leg muscles during standing.

AU - Yamanaka, K.

AU - Yamamoto, Shinichirou

AU - Nakazawa, K.

AU - Yano, H.

AU - Suzuki, Y.

AU - Fukunaga, T.

PY - 1999

Y1 - 1999

N2 - Maximal H-reflex amplitude (Hmax) compared with maximal M-response (Mmax) has been generally used to assess the efficacy of the monosynaptic transmission from Ia afferents to alpha motoneurons in spinal cord. In previous studies, it has been demonstrated that H-reflex in soleus muscle (SOL) is inhibited during free standing due to an increase in presynaptic inhibition of the Ia afferent terminals to SOL motoneurones (Katz et al. 1988, Koceja et al. 1993). Transcranial magnetic stimulation (TMS) of human motor cortex excites the corticospinal system monosynapticaly connecting to spinal alpha motoneurones. However, it is not clear whether or not the motor evoked potentials (MEPs) in SOL and tibialis anterior (TA) muscles induced by TMS are modulated during standing (Ackermann et al. 1991, Lavoie et al. 1995). Considering that postural control functions change with exposure to weightlessness, we supposed that the excitability of SOL and TA spinal motoneurons from Ia afferents and/or corticospinal tracts during free standing would change after long-term bed rest (BR). The aim of this study was to investigate the effect of BR on H-reflex and MEP in SOL and TA during free standing.

AB - Maximal H-reflex amplitude (Hmax) compared with maximal M-response (Mmax) has been generally used to assess the efficacy of the monosynaptic transmission from Ia afferents to alpha motoneurons in spinal cord. In previous studies, it has been demonstrated that H-reflex in soleus muscle (SOL) is inhibited during free standing due to an increase in presynaptic inhibition of the Ia afferent terminals to SOL motoneurones (Katz et al. 1988, Koceja et al. 1993). Transcranial magnetic stimulation (TMS) of human motor cortex excites the corticospinal system monosynapticaly connecting to spinal alpha motoneurones. However, it is not clear whether or not the motor evoked potentials (MEPs) in SOL and tibialis anterior (TA) muscles induced by TMS are modulated during standing (Ackermann et al. 1991, Lavoie et al. 1995). Considering that postural control functions change with exposure to weightlessness, we supposed that the excitability of SOL and TA spinal motoneurons from Ia afferents and/or corticospinal tracts during free standing would change after long-term bed rest (BR). The aim of this study was to investigate the effect of BR on H-reflex and MEP in SOL and TA during free standing.

UR - http://www.scopus.com/inward/record.url?scp=0033156357&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033156357&partnerID=8YFLogxK

M3 - Article

VL - 6

JO - Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology

JF - Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology

SN - 1077-9248

IS - 1

ER -