Abstract
A skilful combination of different types of pinning centers with the aim to optimize Jc(B) performance of bulk superconductors in a wide range of magnetic fields is demonstrated on melt-textured (Nd,Eu,Gd)Ba2Cu3O7-δ and NdBa2Cu3O7-δ materials. In this contribution we show (i) the distinct effect of different types of micrometer-size secondary phase particles on Jc(B) dependence at low fields; (ii) possibility to produce materials with either high-current densities at moderate fields or with a flat Jc(B) curve extending to high fields, via appropriate choice of Nd:Eu:Gd ratio in NEG-123 matrix; (iii) extremely high-irreversibility field (≈9 T at 77 K) in NEG-123 samples Eu/Gd > 1 and a small content of NEG-211; (iv) twin structure effect in melt-textured Nd-123 doped by micron-sized Nd-211 particles resulting at low temperatures in a field independent Jc(B) extending to very high fields (at 40 K above 10 T). Vast majority of the data could be interpreted in terms of additive contributions of pinning on point-like and large defects.
Original language | English |
---|---|
Pages (from-to) | 707-712 |
Number of pages | 6 |
Journal | Physica C: Superconductivity and its applications |
Volume | 378-381 |
Issue number | PART 1 |
DOIs | |
Publication status | Published - 2002 Oct 1 |
Externally published | Yes |
Keywords
- Flux pinning
- Melt processing
- REBaCuO
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering