Enormously fast RNA hydrolysis by Lanthanide(III) ions under physiological conditions

Eminent candidates for novel tools of biotechnology

Kazunari Matsumura, Makoto Komiyama

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Lanthanide(III) ions have shown enormous catalyses for the hydrolysis of the phosphodiester linkages in RNA, indicating their high potential for versatile applications to biotechnology and molecular biology. The activity monotonically increases with increasing atomic number in the lanthanide series, the last three ions (Tm3+, Yb3+, and Lu3+) being the most active. Non-lanthanide metal ions are virtually inactive. The pseudo first-order rate constant for the hydrolysis of adenylyl (3'-5') adenosine (ApA)) by LuCl3, (5 mmol·dm-3) at pH 7.2 and 30°C is 1.9 x 10-1 min-1 (the half-life is only 3.6 min), corresponding to 108-fold acceleration. The product is an equimolar mixture of adenosine and its 2'- or 3'-monophosphate without any byproducts. The 2',3'-cyclic monophosphate of adenosine is not accumulated much in the reaction mixture. Lanthanide ions also efficiently hydrolyze oligoribonucleotides without a specific base-preference. In ApA hydrolysis by NdCl3, and GdCl3, the dependence of the hydrolysis rate on either the pH or concentration of the metal salt coincides fairly well with the corresponding profile of the equilibrium concentration of the bimetallic hydroxo-cluster [M2(OH)2]4+ (M = metal ion). Both the formation of the pentacoordinated intermediate and its decomposition are greatly promoted by lanthanide ions. A catalytic mechanism in which two metal ions (or their coordination water) in these tetracationic hydroxo-clusters show acid/base cooperation is proposed.

Original languageEnglish
Pages (from-to)387-394
Number of pages8
JournalJournal of Biochemistry
Volume122
Issue number2
Publication statusPublished - 1997 Aug
Externally publishedYes

Fingerprint

Lanthanoid Series Elements
Biotechnology
Hydrolysis
RNA
Ions
Metal ions
Oligoribonucleotides
Molecular biology
Adenosine
Byproducts
Rate constants
Salts
Metals
Decomposition
Acids
tetraconazole
Water

Keywords

  • Lanthanide ion
  • Lutetium(III) ion
  • Metal hydroxo-cluster
  • RNA hydrolysis
  • Ytterbium(III) ion

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{d110f43ab59240e699dcbc62b4d6318c,
title = "Enormously fast RNA hydrolysis by Lanthanide(III) ions under physiological conditions: Eminent candidates for novel tools of biotechnology",
abstract = "Lanthanide(III) ions have shown enormous catalyses for the hydrolysis of the phosphodiester linkages in RNA, indicating their high potential for versatile applications to biotechnology and molecular biology. The activity monotonically increases with increasing atomic number in the lanthanide series, the last three ions (Tm3+, Yb3+, and Lu3+) being the most active. Non-lanthanide metal ions are virtually inactive. The pseudo first-order rate constant for the hydrolysis of adenylyl (3'-5') adenosine (ApA)) by LuCl3, (5 mmol·dm-3) at pH 7.2 and 30°C is 1.9 x 10-1 min-1 (the half-life is only 3.6 min), corresponding to 108-fold acceleration. The product is an equimolar mixture of adenosine and its 2'- or 3'-monophosphate without any byproducts. The 2',3'-cyclic monophosphate of adenosine is not accumulated much in the reaction mixture. Lanthanide ions also efficiently hydrolyze oligoribonucleotides without a specific base-preference. In ApA hydrolysis by NdCl3, and GdCl3, the dependence of the hydrolysis rate on either the pH or concentration of the metal salt coincides fairly well with the corresponding profile of the equilibrium concentration of the bimetallic hydroxo-cluster [M2(OH)2]4+ (M = metal ion). Both the formation of the pentacoordinated intermediate and its decomposition are greatly promoted by lanthanide ions. A catalytic mechanism in which two metal ions (or their coordination water) in these tetracationic hydroxo-clusters show acid/base cooperation is proposed.",
keywords = "Lanthanide ion, Lutetium(III) ion, Metal hydroxo-cluster, RNA hydrolysis, Ytterbium(III) ion",
author = "Kazunari Matsumura and Makoto Komiyama",
year = "1997",
month = "8",
language = "English",
volume = "122",
pages = "387--394",
journal = "Journal of Biochemistry",
issn = "0021-924X",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - Enormously fast RNA hydrolysis by Lanthanide(III) ions under physiological conditions

T2 - Eminent candidates for novel tools of biotechnology

AU - Matsumura, Kazunari

AU - Komiyama, Makoto

PY - 1997/8

Y1 - 1997/8

N2 - Lanthanide(III) ions have shown enormous catalyses for the hydrolysis of the phosphodiester linkages in RNA, indicating their high potential for versatile applications to biotechnology and molecular biology. The activity monotonically increases with increasing atomic number in the lanthanide series, the last three ions (Tm3+, Yb3+, and Lu3+) being the most active. Non-lanthanide metal ions are virtually inactive. The pseudo first-order rate constant for the hydrolysis of adenylyl (3'-5') adenosine (ApA)) by LuCl3, (5 mmol·dm-3) at pH 7.2 and 30°C is 1.9 x 10-1 min-1 (the half-life is only 3.6 min), corresponding to 108-fold acceleration. The product is an equimolar mixture of adenosine and its 2'- or 3'-monophosphate without any byproducts. The 2',3'-cyclic monophosphate of adenosine is not accumulated much in the reaction mixture. Lanthanide ions also efficiently hydrolyze oligoribonucleotides without a specific base-preference. In ApA hydrolysis by NdCl3, and GdCl3, the dependence of the hydrolysis rate on either the pH or concentration of the metal salt coincides fairly well with the corresponding profile of the equilibrium concentration of the bimetallic hydroxo-cluster [M2(OH)2]4+ (M = metal ion). Both the formation of the pentacoordinated intermediate and its decomposition are greatly promoted by lanthanide ions. A catalytic mechanism in which two metal ions (or their coordination water) in these tetracationic hydroxo-clusters show acid/base cooperation is proposed.

AB - Lanthanide(III) ions have shown enormous catalyses for the hydrolysis of the phosphodiester linkages in RNA, indicating their high potential for versatile applications to biotechnology and molecular biology. The activity monotonically increases with increasing atomic number in the lanthanide series, the last three ions (Tm3+, Yb3+, and Lu3+) being the most active. Non-lanthanide metal ions are virtually inactive. The pseudo first-order rate constant for the hydrolysis of adenylyl (3'-5') adenosine (ApA)) by LuCl3, (5 mmol·dm-3) at pH 7.2 and 30°C is 1.9 x 10-1 min-1 (the half-life is only 3.6 min), corresponding to 108-fold acceleration. The product is an equimolar mixture of adenosine and its 2'- or 3'-monophosphate without any byproducts. The 2',3'-cyclic monophosphate of adenosine is not accumulated much in the reaction mixture. Lanthanide ions also efficiently hydrolyze oligoribonucleotides without a specific base-preference. In ApA hydrolysis by NdCl3, and GdCl3, the dependence of the hydrolysis rate on either the pH or concentration of the metal salt coincides fairly well with the corresponding profile of the equilibrium concentration of the bimetallic hydroxo-cluster [M2(OH)2]4+ (M = metal ion). Both the formation of the pentacoordinated intermediate and its decomposition are greatly promoted by lanthanide ions. A catalytic mechanism in which two metal ions (or their coordination water) in these tetracationic hydroxo-clusters show acid/base cooperation is proposed.

KW - Lanthanide ion

KW - Lutetium(III) ion

KW - Metal hydroxo-cluster

KW - RNA hydrolysis

KW - Ytterbium(III) ion

UR - http://www.scopus.com/inward/record.url?scp=0030799197&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030799197&partnerID=8YFLogxK

M3 - Article

VL - 122

SP - 387

EP - 394

JO - Journal of Biochemistry

JF - Journal of Biochemistry

SN - 0021-924X

IS - 2

ER -