Abstract
We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au (Formula presented.) nanoclusters against ab-initio molecular dynamics simulations and show we can achieve similar accuracy with the machine learned potential at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and has identified areas for future improvement.
Original language | English |
---|---|
Article number | 3891 |
Journal | Nanomaterials |
Volume | 12 |
Issue number | 21 |
DOIs | |
Publication status | Published - 2022 Nov |
Keywords
- gold clusters
- heat capacities
- machine learning potentials
- molecular dynamics
- structures
ASJC Scopus subject areas
- Chemical Engineering(all)
- Materials Science(all)