Evolution of electron cross-field transport induced by an equilibrium azimuthal electric field in an e × B Hall thruster discharge under an azimuthally inhomogeneous neutral supply

J. Bak, R. Kawashima, J. Simmonds, K. Komurasaki

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The electron cross field transport by the induced azimuthal electric field in a Hall thruster exhibits the mobility scaled by 1/B. This study investigates parameters affecting this transport over a Hall thruster's distinct regions, such as the ionization, acceleration, and plume regions. The main focus is on the nonzero equilibrium azimuthal electric field induced by an azimuthally inhomogeneous neutral supply. A fast Fourier transform analysis of the plasma structure reveals that the wavenumber k of the azimuthal plasma structure increases from k = 2, which is the input condition, to k = 4 in the plume region, and that the total axial flux caused by the azimuthal electric field is mainly induced from the structures of the dominant Fourier components. The azimuthal phase relation between plasma potential and density is formed to maximize the axial electron flux at the plume region and starts varying along with other plasma properties as electrons flow toward the acceleration region. The spatial evolution of the effective axial mobility coefficient is extracted, and its regional characteristics are discussed.

Original languageEnglish
Article number102510
JournalPhysics of Plasmas
Volume28
Issue number10
DOIs
Publication statusPublished - 2021 Oct 1
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Evolution of electron cross-field transport induced by an equilibrium azimuthal electric field in an e × B Hall thruster discharge under an azimuthally inhomogeneous neutral supply'. Together they form a unique fingerprint.

Cite this