Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization

Koji Hattori, Michihito Hiwatari, Chiaki Iiyama, Yasuo Yoshimi, Fukashi Kohori, Kiyotaka Sakai, Sergey A. Piletsky

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Morphology and solute diffusive permeability of thin layer of molecularly imprinted polymer (MIP) change in the presence of templates, which is termed as "gate effect". To optimize morphological changes induced by the gate effect, the flexibility, density, and the amount of specific binding sites for templates of the MIP-grafted layer must be tightly controlled during radical polymerization. Living radical polymerization with "iniferter" (initiator-transfer agent-terminator) is useful tool for controlling degree of polymerization by reaction time. In this work, photoactive iniferter (benzyl dietyldithiocarbamate) was immobilized on a cellulose membrane via a silane coupler. This treated membrane was grafted with theophylline-imprinted copolymer of methacrylic acid and ethylene glycol dimethacrylate by ultraviolet irradiation. The relationship between the amount of graft copolymer, the degree of the gate effect and the time of UV irradiation was studied. The amount of grafted copolymer increase by repeating polymerization cycle. In addition, the variation of the diffusive permeability by template clearly differs to that by analogue. Therefore, these MIP membranes can discriminate two alkaloids by difference of diffusive permeability. The variation by the template or the analogue and the selectivity of the permeability depended on irradiation time. Those results indicate that synthesized MIP has a "living nature" and the gate effect is feasible to control by irradiation time. Living radical polymerization is a promising method to build sophisticated architecture of MIP membranes possessing self-controllable permeability by gate effect.

Original languageEnglish
Pages (from-to)169-173
Number of pages5
JournalJournal of Membrane Science
Volume233
Issue number1-2
DOIs
Publication statusPublished - 2004 Apr 15

Fingerprint

Living polymerization
Theophylline
Free radical polymerization
cellulose
Cellulose
permeability
Polymers
polymerization
templates
Irradiation
polymers
membranes
Membranes
copolymers
irradiation
Copolymers
Polymerization
analogs
Silanes
Alkaloids

Keywords

  • Dialysis
  • Gate effect
  • Graft polymerization
  • Iniferter
  • Molecular imprinting

ASJC Scopus subject areas

  • Filtration and Separation
  • Polymers and Plastics

Cite this

Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization. / Hattori, Koji; Hiwatari, Michihito; Iiyama, Chiaki; Yoshimi, Yasuo; Kohori, Fukashi; Sakai, Kiyotaka; Piletsky, Sergey A.

In: Journal of Membrane Science, Vol. 233, No. 1-2, 15.04.2004, p. 169-173.

Research output: Contribution to journalArticle

Hattori, Koji ; Hiwatari, Michihito ; Iiyama, Chiaki ; Yoshimi, Yasuo ; Kohori, Fukashi ; Sakai, Kiyotaka ; Piletsky, Sergey A. / Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization. In: Journal of Membrane Science. 2004 ; Vol. 233, No. 1-2. pp. 169-173.
@article{ee42ae13aee44fd89e03284b322f6c0b,
title = "Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization",
abstract = "Morphology and solute diffusive permeability of thin layer of molecularly imprinted polymer (MIP) change in the presence of templates, which is termed as {"}gate effect{"}. To optimize morphological changes induced by the gate effect, the flexibility, density, and the amount of specific binding sites for templates of the MIP-grafted layer must be tightly controlled during radical polymerization. Living radical polymerization with {"}iniferter{"} (initiator-transfer agent-terminator) is useful tool for controlling degree of polymerization by reaction time. In this work, photoactive iniferter (benzyl dietyldithiocarbamate) was immobilized on a cellulose membrane via a silane coupler. This treated membrane was grafted with theophylline-imprinted copolymer of methacrylic acid and ethylene glycol dimethacrylate by ultraviolet irradiation. The relationship between the amount of graft copolymer, the degree of the gate effect and the time of UV irradiation was studied. The amount of grafted copolymer increase by repeating polymerization cycle. In addition, the variation of the diffusive permeability by template clearly differs to that by analogue. Therefore, these MIP membranes can discriminate two alkaloids by difference of diffusive permeability. The variation by the template or the analogue and the selectivity of the permeability depended on irradiation time. Those results indicate that synthesized MIP has a {"}living nature{"} and the gate effect is feasible to control by irradiation time. Living radical polymerization is a promising method to build sophisticated architecture of MIP membranes possessing self-controllable permeability by gate effect.",
keywords = "Dialysis, Gate effect, Graft polymerization, Iniferter, Molecular imprinting",
author = "Koji Hattori and Michihito Hiwatari and Chiaki Iiyama and Yasuo Yoshimi and Fukashi Kohori and Kiyotaka Sakai and Piletsky, {Sergey A.}",
year = "2004",
month = "4",
day = "15",
doi = "10.1016/j.memsci.2003.12.013",
language = "English",
volume = "233",
pages = "169--173",
journal = "Jornal of Membrane Science",
issn = "0376-7388",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization

AU - Hattori, Koji

AU - Hiwatari, Michihito

AU - Iiyama, Chiaki

AU - Yoshimi, Yasuo

AU - Kohori, Fukashi

AU - Sakai, Kiyotaka

AU - Piletsky, Sergey A.

PY - 2004/4/15

Y1 - 2004/4/15

N2 - Morphology and solute diffusive permeability of thin layer of molecularly imprinted polymer (MIP) change in the presence of templates, which is termed as "gate effect". To optimize morphological changes induced by the gate effect, the flexibility, density, and the amount of specific binding sites for templates of the MIP-grafted layer must be tightly controlled during radical polymerization. Living radical polymerization with "iniferter" (initiator-transfer agent-terminator) is useful tool for controlling degree of polymerization by reaction time. In this work, photoactive iniferter (benzyl dietyldithiocarbamate) was immobilized on a cellulose membrane via a silane coupler. This treated membrane was grafted with theophylline-imprinted copolymer of methacrylic acid and ethylene glycol dimethacrylate by ultraviolet irradiation. The relationship between the amount of graft copolymer, the degree of the gate effect and the time of UV irradiation was studied. The amount of grafted copolymer increase by repeating polymerization cycle. In addition, the variation of the diffusive permeability by template clearly differs to that by analogue. Therefore, these MIP membranes can discriminate two alkaloids by difference of diffusive permeability. The variation by the template or the analogue and the selectivity of the permeability depended on irradiation time. Those results indicate that synthesized MIP has a "living nature" and the gate effect is feasible to control by irradiation time. Living radical polymerization is a promising method to build sophisticated architecture of MIP membranes possessing self-controllable permeability by gate effect.

AB - Morphology and solute diffusive permeability of thin layer of molecularly imprinted polymer (MIP) change in the presence of templates, which is termed as "gate effect". To optimize morphological changes induced by the gate effect, the flexibility, density, and the amount of specific binding sites for templates of the MIP-grafted layer must be tightly controlled during radical polymerization. Living radical polymerization with "iniferter" (initiator-transfer agent-terminator) is useful tool for controlling degree of polymerization by reaction time. In this work, photoactive iniferter (benzyl dietyldithiocarbamate) was immobilized on a cellulose membrane via a silane coupler. This treated membrane was grafted with theophylline-imprinted copolymer of methacrylic acid and ethylene glycol dimethacrylate by ultraviolet irradiation. The relationship between the amount of graft copolymer, the degree of the gate effect and the time of UV irradiation was studied. The amount of grafted copolymer increase by repeating polymerization cycle. In addition, the variation of the diffusive permeability by template clearly differs to that by analogue. Therefore, these MIP membranes can discriminate two alkaloids by difference of diffusive permeability. The variation by the template or the analogue and the selectivity of the permeability depended on irradiation time. Those results indicate that synthesized MIP has a "living nature" and the gate effect is feasible to control by irradiation time. Living radical polymerization is a promising method to build sophisticated architecture of MIP membranes possessing self-controllable permeability by gate effect.

KW - Dialysis

KW - Gate effect

KW - Graft polymerization

KW - Iniferter

KW - Molecular imprinting

UR - http://www.scopus.com/inward/record.url?scp=1842532492&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1842532492&partnerID=8YFLogxK

U2 - 10.1016/j.memsci.2003.12.013

DO - 10.1016/j.memsci.2003.12.013

M3 - Article

VL - 233

SP - 169

EP - 173

JO - Jornal of Membrane Science

JF - Jornal of Membrane Science

SN - 0376-7388

IS - 1-2

ER -