Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor

Kouhei Orihara, Atsushi Hikichi, Tomohiko Arita, Hitoshi Muguruma, Yasuo Yoshimi

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (ka = 350 ± 100 M−1 s−1), dissociation (kd = (5.0 ± 2.0) × 10−4 s−1), and binding (KD = 1.3 ± 0.6 μM) constants, demonstrating that the PIP-MIP as a synthetic antibody can be applied to analytical chemistry.

Original languageEnglish
Pages (from-to)324-330
Number of pages7
JournalJournal of Pharmaceutical and Biomedical Analysis
Volume151
DOIs
Publication statusPublished - 2018 Mar 20

Keywords

  • Heparin
  • Molecularly imprinted polymer
  • Plasma-induced polymerization
  • Surface imprinting.

ASJC Scopus subject areas

  • Analytical Chemistry
  • Pharmaceutical Science
  • Drug Discovery
  • Spectroscopy
  • Clinical Biochemistry

Fingerprint Dive into the research topics of 'Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor'. Together they form a unique fingerprint.

Cite this