Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model

Katsuaki Shirai, Yusuke Yaguchi, Lars Büttner, Jürgen Czarske, Shinnosuke Obi

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The flow in the tip clearance of a hard disk drive model has been investigated with laser Doppler techniques. The flow was driven by co-rotating disks inside a cylindrical enclosure in order to simulate a hard disk drive used for data storage devices. The main focus of the investigation was on the understanding of complex flow behavior in the narrow gap region between the disk tip and the outer shroud wall, which is supposed to be one of the causes of flow induced vibration of the disks. Experiments in the past have never been able to examine this region because of the lack of the spatial resolution of sensors in the highly three-dimensional flow in the region. In the present investigation, the flow velocity in the tip clearance region was measured with optical measurement techniques for the first time. The flow behaviors are investigated for four different conditions with two different gap widths and two different shapes of the shroud walls with and without ribs. The velocity measurements were taken both with conventional laser Doppler velocimetry and using a laser Doppler velocity profile sensor with a spatial resolution in the micrometer range. The circumferential velocity component was measured along the axial and radial directions. The steep gradients of the circumferential mean velocity in both directions were successfully captured with a high spatial resolution, which was achieved by the velocity profile sensor. From the supplementary investigations, the existence of vortex structures in the tip clearance region was confirmed with a dependence on the shroud gap width and the shroud shape. The interactions of the two boundary layers seem to be the source of the complex three-dimensional behaviors of the flow in this region.

Original languageEnglish
Pages (from-to)573-586
Number of pages14
JournalExperiments in Fluids
Volume50
Issue number3
DOIs
Publication statusPublished - 2011 Mar
Externally publishedYes

Fingerprint

Hard disk storage
clearances
velocity measurement
Velocity measurement
shrouds
Lasers
lasers
Sensors
spatial resolution
sensors
Rotating disks
velocity distribution
Enclosures
Flow velocity
Boundary layers
Vortex flow
three dimensional flow
rotating disks
data storage
enclosure

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Fluid Flow and Transfer Processes
  • Computational Mechanics
  • Mechanics of Materials

Cite this

Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model. / Shirai, Katsuaki; Yaguchi, Yusuke; Büttner, Lars; Czarske, Jürgen; Obi, Shinnosuke.

In: Experiments in Fluids, Vol. 50, No. 3, 03.2011, p. 573-586.

Research output: Contribution to journalArticle

Shirai, Katsuaki ; Yaguchi, Yusuke ; Büttner, Lars ; Czarske, Jürgen ; Obi, Shinnosuke. / Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model. In: Experiments in Fluids. 2011 ; Vol. 50, No. 3. pp. 573-586.
@article{4aae611063be4a9187000956fdb9e7c9,
title = "Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model",
abstract = "The flow in the tip clearance of a hard disk drive model has been investigated with laser Doppler techniques. The flow was driven by co-rotating disks inside a cylindrical enclosure in order to simulate a hard disk drive used for data storage devices. The main focus of the investigation was on the understanding of complex flow behavior in the narrow gap region between the disk tip and the outer shroud wall, which is supposed to be one of the causes of flow induced vibration of the disks. Experiments in the past have never been able to examine this region because of the lack of the spatial resolution of sensors in the highly three-dimensional flow in the region. In the present investigation, the flow velocity in the tip clearance region was measured with optical measurement techniques for the first time. The flow behaviors are investigated for four different conditions with two different gap widths and two different shapes of the shroud walls with and without ribs. The velocity measurements were taken both with conventional laser Doppler velocimetry and using a laser Doppler velocity profile sensor with a spatial resolution in the micrometer range. The circumferential velocity component was measured along the axial and radial directions. The steep gradients of the circumferential mean velocity in both directions were successfully captured with a high spatial resolution, which was achieved by the velocity profile sensor. From the supplementary investigations, the existence of vortex structures in the tip clearance region was confirmed with a dependence on the shroud gap width and the shroud shape. The interactions of the two boundary layers seem to be the source of the complex three-dimensional behaviors of the flow in this region.",
author = "Katsuaki Shirai and Yusuke Yaguchi and Lars B{\"u}ttner and J{\"u}rgen Czarske and Shinnosuke Obi",
year = "2011",
month = "3",
doi = "10.1007/s00348-010-0959-0",
language = "English",
volume = "50",
pages = "573--586",
journal = "Experiments in Fluids",
issn = "0723-4864",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model

AU - Shirai, Katsuaki

AU - Yaguchi, Yusuke

AU - Büttner, Lars

AU - Czarske, Jürgen

AU - Obi, Shinnosuke

PY - 2011/3

Y1 - 2011/3

N2 - The flow in the tip clearance of a hard disk drive model has been investigated with laser Doppler techniques. The flow was driven by co-rotating disks inside a cylindrical enclosure in order to simulate a hard disk drive used for data storage devices. The main focus of the investigation was on the understanding of complex flow behavior in the narrow gap region between the disk tip and the outer shroud wall, which is supposed to be one of the causes of flow induced vibration of the disks. Experiments in the past have never been able to examine this region because of the lack of the spatial resolution of sensors in the highly three-dimensional flow in the region. In the present investigation, the flow velocity in the tip clearance region was measured with optical measurement techniques for the first time. The flow behaviors are investigated for four different conditions with two different gap widths and two different shapes of the shroud walls with and without ribs. The velocity measurements were taken both with conventional laser Doppler velocimetry and using a laser Doppler velocity profile sensor with a spatial resolution in the micrometer range. The circumferential velocity component was measured along the axial and radial directions. The steep gradients of the circumferential mean velocity in both directions were successfully captured with a high spatial resolution, which was achieved by the velocity profile sensor. From the supplementary investigations, the existence of vortex structures in the tip clearance region was confirmed with a dependence on the shroud gap width and the shroud shape. The interactions of the two boundary layers seem to be the source of the complex three-dimensional behaviors of the flow in this region.

AB - The flow in the tip clearance of a hard disk drive model has been investigated with laser Doppler techniques. The flow was driven by co-rotating disks inside a cylindrical enclosure in order to simulate a hard disk drive used for data storage devices. The main focus of the investigation was on the understanding of complex flow behavior in the narrow gap region between the disk tip and the outer shroud wall, which is supposed to be one of the causes of flow induced vibration of the disks. Experiments in the past have never been able to examine this region because of the lack of the spatial resolution of sensors in the highly three-dimensional flow in the region. In the present investigation, the flow velocity in the tip clearance region was measured with optical measurement techniques for the first time. The flow behaviors are investigated for four different conditions with two different gap widths and two different shapes of the shroud walls with and without ribs. The velocity measurements were taken both with conventional laser Doppler velocimetry and using a laser Doppler velocity profile sensor with a spatial resolution in the micrometer range. The circumferential velocity component was measured along the axial and radial directions. The steep gradients of the circumferential mean velocity in both directions were successfully captured with a high spatial resolution, which was achieved by the velocity profile sensor. From the supplementary investigations, the existence of vortex structures in the tip clearance region was confirmed with a dependence on the shroud gap width and the shroud shape. The interactions of the two boundary layers seem to be the source of the complex three-dimensional behaviors of the flow in this region.

UR - http://www.scopus.com/inward/record.url?scp=79954596289&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79954596289&partnerID=8YFLogxK

U2 - 10.1007/s00348-010-0959-0

DO - 10.1007/s00348-010-0959-0

M3 - Article

AN - SCOPUS:79954596289

VL - 50

SP - 573

EP - 586

JO - Experiments in Fluids

JF - Experiments in Fluids

SN - 0723-4864

IS - 3

ER -