Hitomi observations of the LMC SNR N 132 D: Highly redshifted X-ray emission from iron ejecta

Hitomi Collaboration

Research output: Contribution to journalArticle

Abstract

We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ∼ 800 km s−1 compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km s−1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ∼ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.

Original languageEnglish
Article numberpsx151
JournalPublications of the Astronomical Society of Japan
Volume70
Issue number2
DOIs
Publication statusPublished - 2018 Mar 1

Fingerprint

Magellanic clouds
ejecta
spectral resolution
iron
supernova remnants
x rays
spectrometer
spectrometers
high resolution
astronomy
tracing
velocity measurement
supernovae
recovery
shell
intervals
ion
ions
material

Keywords

  • Instrumentation: spectrographs
  • ISM: individual objects (N 132 D)
  • ISM: supernova remnants
  • Methods: observational
  • X-rays: individual (N 132 D)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Hitomi observations of the LMC SNR N 132 D : Highly redshifted X-ray emission from iron ejecta. / Hitomi Collaboration.

In: Publications of the Astronomical Society of Japan, Vol. 70, No. 2, psx151, 01.03.2018.

Research output: Contribution to journalArticle

@article{103af4b270c7479988379c6d945693d7,
title = "Hitomi observations of the LMC SNR N 132 D: Highly redshifted X-ray emission from iron ejecta",
abstract = "We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ∼ 800 km s−1 compared to the local LMC interstellar medium (ISM), with a 90{\%} credible interval of 50-1500 km s−1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ∼ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.",
keywords = "Instrumentation: spectrographs, ISM: individual objects (N 132 D), ISM: supernova remnants, Methods: observational, X-rays: individual (N 132 D)",
author = "{Hitomi Collaboration} and Felix Aharonian and Hiroki Akamatsu and Fumie Akimoto and Allen, {Steven W.} and Lorella Angelini and Marc Audard and Hisamitsu Awaki and Magnus Axelsson and Aya Bamba and Bautz, {Marshall W.} and Roger Blandford and Brenneman, {Laura W.} and Brown, {Gregory V.} and Esra Bulbul and Cackett, {Edward M.} and Maria Chernyakova and Chiao, {Meng P.} and Coppi, {Paolo S.} and Elisa Costantini and {De Plaa}, Jelle and {De Vries}, {Cor P.} and {Den Herder}, {Jan Willem} and Chris Done and Tadayasu Dotani and Ken Ebisawa and Eckart, {Megan E.} and Teruaki Enoto and Yuichiro Ezoe and Fabian, {Andrew C.} and Carlo Ferrigno and Foster, {Adam R.} and Ryuichi Fujimoto and Yasushi Fukazawa and Akihiro Furuzawa and Massimiliano Galeazzi and Gallo, {Luigi C.} and Poshak Gandhi and Margherita Giustini and Andrea Goldwurm and Liyi Gu and Matteo Guainazzi and Yoshito Haba and Kouichi Hagino and Kenji Hamaguchi and Harrus, {Ilana M.} and Isamu Hatsukade and Katsuhiro Hayashi and Takayuki Hayashi and Kiyoshi Hayashida and Aya Kubota",
year = "2018",
month = "3",
day = "1",
doi = "10.1093/pasj/psx151",
language = "English",
volume = "70",
journal = "Publication of the Astronomical Society of Japan",
issn = "0004-6264",
publisher = "Astronomical Society of Japan",
number = "2",

}

TY - JOUR

T1 - Hitomi observations of the LMC SNR N 132 D

T2 - Highly redshifted X-ray emission from iron ejecta

AU - Hitomi Collaboration

AU - Aharonian, Felix

AU - Akamatsu, Hiroki

AU - Akimoto, Fumie

AU - Allen, Steven W.

AU - Angelini, Lorella

AU - Audard, Marc

AU - Awaki, Hisamitsu

AU - Axelsson, Magnus

AU - Bamba, Aya

AU - Bautz, Marshall W.

AU - Blandford, Roger

AU - Brenneman, Laura W.

AU - Brown, Gregory V.

AU - Bulbul, Esra

AU - Cackett, Edward M.

AU - Chernyakova, Maria

AU - Chiao, Meng P.

AU - Coppi, Paolo S.

AU - Costantini, Elisa

AU - De Plaa, Jelle

AU - De Vries, Cor P.

AU - Den Herder, Jan Willem

AU - Done, Chris

AU - Dotani, Tadayasu

AU - Ebisawa, Ken

AU - Eckart, Megan E.

AU - Enoto, Teruaki

AU - Ezoe, Yuichiro

AU - Fabian, Andrew C.

AU - Ferrigno, Carlo

AU - Foster, Adam R.

AU - Fujimoto, Ryuichi

AU - Fukazawa, Yasushi

AU - Furuzawa, Akihiro

AU - Galeazzi, Massimiliano

AU - Gallo, Luigi C.

AU - Gandhi, Poshak

AU - Giustini, Margherita

AU - Goldwurm, Andrea

AU - Gu, Liyi

AU - Guainazzi, Matteo

AU - Haba, Yoshito

AU - Hagino, Kouichi

AU - Hamaguchi, Kenji

AU - Harrus, Ilana M.

AU - Hatsukade, Isamu

AU - Hayashi, Katsuhiro

AU - Hayashi, Takayuki

AU - Hayashida, Kiyoshi

AU - Kubota, Aya

PY - 2018/3/1

Y1 - 2018/3/1

N2 - We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ∼ 800 km s−1 compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km s−1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ∼ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.

AB - We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ∼ 800 km s−1 compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km s−1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ∼ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.

KW - Instrumentation: spectrographs

KW - ISM: individual objects (N 132 D)

KW - ISM: supernova remnants

KW - Methods: observational

KW - X-rays: individual (N 132 D)

UR - http://www.scopus.com/inward/record.url?scp=85071371009&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071371009&partnerID=8YFLogxK

U2 - 10.1093/pasj/psx151

DO - 10.1093/pasj/psx151

M3 - Article

AN - SCOPUS:85071371009

VL - 70

JO - Publication of the Astronomical Society of Japan

JF - Publication of the Astronomical Society of Japan

SN - 0004-6264

IS - 2

M1 - psx151

ER -