Hydrogen uptake in titanium aluminides covered with oxide layers

Akito Takasaki, Yoshio Furuya, Youji Taneda

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Two-phase (Ti3Al and TiAl) Ti-45A1 and Ti-50Al (at. pet) alloys, which were preoxidized in static air at 1098 K (825°C) for times between 900 seconds (0.25 hours) and 14.4 ks (4 hours), were charged thermally at 773 K (500°C) with flowing hydrogen gas at a pressure of 0.1 MPa for 72 ks (20 hours), and the effect of oxide layers on hydrogen penetration (or occlusion) in the alloys was investigated by thermal desorption spectroscopy (TDS). The TDS main peak (accelerated hydrogen evolution) temperature increased with an increasing thickness of oxide layers for both alloys, which results in a diffusion of hydrogen through oxide layers. The onset temperature of hydrogen evolution showed the highest values for the alloys with thinner oxide layers and then decreased with increasing thickness of oxide layers, due to hydrogen trapping at the oxide surface. Total hydrogen uptake was the lowest for both of the alloys with the thinnest oxide layers and then increased with an increasing thickness of oxide layers. The thinnest oxide layer on the Ti-45Al alloy (about 600 nm) avoided about 97 pet of the hydrogen occluded in the alloy without an oxide layer, whereas that on the Ti50A1 alloy (about 300 nm) avoided about 83 pet. Titanium oxide (TiO2) was unstable and might be reduced to a-titanium during heating (TDS analysis) at a vacuum level of 10-6 Pa, whereas aluminum oxide (Al2O3) did not change its chemical form.

Original languageEnglish
Pages (from-to)307-314
Number of pages8
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume29
Issue number1
Publication statusPublished - 1998

Fingerprint

titanium aluminides
Titanium
Oxides
Hydrogen
oxides
hydrogen
Thermal desorption spectroscopy
desorption
spectroscopy
Aluminum Oxide
occlusion
Titanium oxides
titanium oxides
penetration
aluminum oxides
titanium

ASJC Scopus subject areas

  • Materials Science(all)
  • Metals and Alloys

Cite this

Hydrogen uptake in titanium aluminides covered with oxide layers. / Takasaki, Akito; Furuya, Yoshio; Taneda, Youji.

In: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 29, No. 1, 1998, p. 307-314.

Research output: Contribution to journalArticle

@article{4369b61b145548a5834de44abe6dc043,
title = "Hydrogen uptake in titanium aluminides covered with oxide layers",
abstract = "Two-phase (Ti3Al and TiAl) Ti-45A1 and Ti-50Al (at. pet) alloys, which were preoxidized in static air at 1098 K (825°C) for times between 900 seconds (0.25 hours) and 14.4 ks (4 hours), were charged thermally at 773 K (500°C) with flowing hydrogen gas at a pressure of 0.1 MPa for 72 ks (20 hours), and the effect of oxide layers on hydrogen penetration (or occlusion) in the alloys was investigated by thermal desorption spectroscopy (TDS). The TDS main peak (accelerated hydrogen evolution) temperature increased with an increasing thickness of oxide layers for both alloys, which results in a diffusion of hydrogen through oxide layers. The onset temperature of hydrogen evolution showed the highest values for the alloys with thinner oxide layers and then decreased with increasing thickness of oxide layers, due to hydrogen trapping at the oxide surface. Total hydrogen uptake was the lowest for both of the alloys with the thinnest oxide layers and then increased with an increasing thickness of oxide layers. The thinnest oxide layer on the Ti-45Al alloy (about 600 nm) avoided about 97 pet of the hydrogen occluded in the alloy without an oxide layer, whereas that on the Ti50A1 alloy (about 300 nm) avoided about 83 pet. Titanium oxide (TiO2) was unstable and might be reduced to a-titanium during heating (TDS analysis) at a vacuum level of 10-6 Pa, whereas aluminum oxide (Al2O3) did not change its chemical form.",
author = "Akito Takasaki and Yoshio Furuya and Youji Taneda",
year = "1998",
language = "English",
volume = "29",
pages = "307--314",
journal = "Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science",
issn = "1073-5623",
publisher = "Springer Boston",
number = "1",

}

TY - JOUR

T1 - Hydrogen uptake in titanium aluminides covered with oxide layers

AU - Takasaki, Akito

AU - Furuya, Yoshio

AU - Taneda, Youji

PY - 1998

Y1 - 1998

N2 - Two-phase (Ti3Al and TiAl) Ti-45A1 and Ti-50Al (at. pet) alloys, which were preoxidized in static air at 1098 K (825°C) for times between 900 seconds (0.25 hours) and 14.4 ks (4 hours), were charged thermally at 773 K (500°C) with flowing hydrogen gas at a pressure of 0.1 MPa for 72 ks (20 hours), and the effect of oxide layers on hydrogen penetration (or occlusion) in the alloys was investigated by thermal desorption spectroscopy (TDS). The TDS main peak (accelerated hydrogen evolution) temperature increased with an increasing thickness of oxide layers for both alloys, which results in a diffusion of hydrogen through oxide layers. The onset temperature of hydrogen evolution showed the highest values for the alloys with thinner oxide layers and then decreased with increasing thickness of oxide layers, due to hydrogen trapping at the oxide surface. Total hydrogen uptake was the lowest for both of the alloys with the thinnest oxide layers and then increased with an increasing thickness of oxide layers. The thinnest oxide layer on the Ti-45Al alloy (about 600 nm) avoided about 97 pet of the hydrogen occluded in the alloy without an oxide layer, whereas that on the Ti50A1 alloy (about 300 nm) avoided about 83 pet. Titanium oxide (TiO2) was unstable and might be reduced to a-titanium during heating (TDS analysis) at a vacuum level of 10-6 Pa, whereas aluminum oxide (Al2O3) did not change its chemical form.

AB - Two-phase (Ti3Al and TiAl) Ti-45A1 and Ti-50Al (at. pet) alloys, which were preoxidized in static air at 1098 K (825°C) for times between 900 seconds (0.25 hours) and 14.4 ks (4 hours), were charged thermally at 773 K (500°C) with flowing hydrogen gas at a pressure of 0.1 MPa for 72 ks (20 hours), and the effect of oxide layers on hydrogen penetration (or occlusion) in the alloys was investigated by thermal desorption spectroscopy (TDS). The TDS main peak (accelerated hydrogen evolution) temperature increased with an increasing thickness of oxide layers for both alloys, which results in a diffusion of hydrogen through oxide layers. The onset temperature of hydrogen evolution showed the highest values for the alloys with thinner oxide layers and then decreased with increasing thickness of oxide layers, due to hydrogen trapping at the oxide surface. Total hydrogen uptake was the lowest for both of the alloys with the thinnest oxide layers and then increased with an increasing thickness of oxide layers. The thinnest oxide layer on the Ti-45Al alloy (about 600 nm) avoided about 97 pet of the hydrogen occluded in the alloy without an oxide layer, whereas that on the Ti50A1 alloy (about 300 nm) avoided about 83 pet. Titanium oxide (TiO2) was unstable and might be reduced to a-titanium during heating (TDS analysis) at a vacuum level of 10-6 Pa, whereas aluminum oxide (Al2O3) did not change its chemical form.

UR - http://www.scopus.com/inward/record.url?scp=0031647753&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031647753&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0031647753

VL - 29

SP - 307

EP - 314

JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

SN - 1073-5623

IS - 1

ER -