TY - JOUR
T1 - Impact of support (MCF, ZrO2, ZSM-5) on the efficiency of Ni catalyst in high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas
AU - Grams, Jacek
AU - Ryczkowski, Robert
AU - Chałupka, Karolina
AU - Sobczak, Izabela
AU - Rzeźnicka, Izabela
AU - Przybysz, Kamila
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - The main objective of this work was to evaluate an impact of a support on the efficiency of nickel catalysts in the high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas. The most important parameters influencing catalytic performance of the catalysts were identified. The properties of three materials (ZSM-5, ZrO2, and MCF (mesostructured cellular foam)) used as a support differing in surface acidity, surface area, pore structure, ability to interact with an active phase, and resistance to coking, have been studied. The results revealed that Ni/MCF, characterized by large pore size and pore volume, low acidity, small NiO crystallites size, and moderate interaction with the active phase, is the most efficient among studied catalysts, while an application of Ni on ZSM-5 support with high-acidity was not beneficial. The results suggest that structure of the support, in particular larger pore size and a better contact between an active phase and reaction intermediates, play an important role in the formation of gaseous products during thermal decomposition of lignocellulosic feedstock. On the other hand, high acidity of the support did not increase the formation of large amounts of hydrogen-rich gaseous products.
AB - The main objective of this work was to evaluate an impact of a support on the efficiency of nickel catalysts in the high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas. The most important parameters influencing catalytic performance of the catalysts were identified. The properties of three materials (ZSM-5, ZrO2, and MCF (mesostructured cellular foam)) used as a support differing in surface acidity, surface area, pore structure, ability to interact with an active phase, and resistance to coking, have been studied. The results revealed that Ni/MCF, characterized by large pore size and pore volume, low acidity, small NiO crystallites size, and moderate interaction with the active phase, is the most efficient among studied catalysts, while an application of Ni on ZSM-5 support with high-acidity was not beneficial. The results suggest that structure of the support, in particular larger pore size and a better contact between an active phase and reaction intermediates, play an important role in the formation of gaseous products during thermal decomposition of lignocellulosic feedstock. On the other hand, high acidity of the support did not increase the formation of large amounts of hydrogen-rich gaseous products.
KW - Cellulose
KW - Hydrogen-rich gas
KW - Lignocellulosic biomass
KW - MCF
KW - Nickel catalyst
KW - Pyrolysis
KW - Thermal decomposition
KW - Zeolite
KW - ZrO
UR - http://www.scopus.com/inward/record.url?scp=85075788935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075788935&partnerID=8YFLogxK
U2 - 10.3390/ma12223792
DO - 10.3390/ma12223792
M3 - Article
AN - SCOPUS:85075788935
VL - 12
JO - Materials
JF - Materials
SN - 1996-1944
IS - 22
M1 - 3792
ER -