Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)

T. Kamae, Y. Fukazawa, N. Isobe, M. Kokubun, A. Kubota, S. Osone, T. Takahashi, N. Tsuchida, H. Ishibashi

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Cerium-doped gadolinium silicic dioxide crystal, GSO(Ce), is a high-Z non-hydroscopic scintillator that gives higher light yield than BGO, and can potentially replace NaI(Tl), CsI(Tl) and BGO in many applications. Its production cost, however, has been substantially higher than any of them, while its energy resolution has been worse than that of NaI(Tl) or CsI(Tl). The merit did not overcome these deficiencies except in limited applications. We developed a low background phoswich counter (the well-type phoswich counter) for the Hard X-ray Detector of the Astro-E project based on GSO scintillator. In the developmental work, we have succeeded in improving the light yield of GSO(Ce) by 40-50%. For energies above 500 keV, a large GSO(Ce) crystal (4.5 cm × 4.5φ cm) now gives energy resolution comparable to or better than the best NaI(Tl) when read out with a phototube. With a small GSO(Ce) crystal (5 × 5 × 5 mm3) and a photodiode, an energy resolution comparable to or better than the best CsI(Tl) has been obtained. With this improved performance, we find that the much higher photopeak efficiency and the shorter scintillation decay time of GSO(Ce) offsets its higher cost for many applications. We summarize our past developmental work to decrease radioactive contamination and to increase light yield of GSO(Ce) for astronomical hard X-ray detection. Included also are measurements done after the unsuccessful launch of the Astro-E mission. The work is still continuing for the remake version of Astro-E Hard X-ray Detector.

Original languageEnglish
Pages (from-to)456-464
Number of pages9
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume490
Issue number3
DOIs
Publication statusPublished - 2002 Sept 11
Externally publishedYes

Keywords

  • GSO
  • Gamma-ray detector
  • Inorganic scintillator
  • Scintillator

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation

Fingerprint

Dive into the research topics of 'Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)'. Together they form a unique fingerprint.

Cite this