Infiltration growth processing of single grain (Gd,Dy)BCO bulk superconductors: Optimization of liquid phase mass and characterization of physical properties

S. Pavan Kumar Naik, Muralidhar Miryala, Kento Takemura, Milos Jirsa, Masato Murakami

Research output: Contribution to journalArticle

7 Citations (Scopus)


Infiltration of an optimal amount of liquid (Ba 3 Cu 5 O 8 denoted further as "035") for efficient peritectic growth is a primary requirement in the infiltration growth (IG) processing of high-quality REBa 2 Cu 3 O 7-δ products. Recently, we optimized the Dy content and the time-temperature schedules for top-seeded IG processing of (Gd,Dy)Ba 2 Cu 3 O 7-δ [(Gd,Dy)BCO] single grain superconductors. Aiming to fabricate larger sized (Gd,Dy)BCO (80 wt. % Gd 2 BaCuO 5 and 20 wt. % of Dy 2 BaCuO 5 ) single grain bulk superconductors, different liquid phase [LP = ErBa 2 Cu 3 O 7-δ (Er-123) and mixed with 035] sources were employed and the LP content was optimized by varying its mass. The increase in Er-123+035 mass assured an abundant amount of liquids for peritectic reaction. The Er-123+035 ratio of 1:1.4 was found to be optimum. The optimized liquid phase infiltration enabled an effective control of (Gd,Dy) 2 BaCuO 5 (211) secondary phase size and content in final microstructures. Bulk single-grain (Gd,Dy)BCO superconductors were fabricated by the top-seeded IG process with an LP mass of 1 and 1.4 wt. %. A fully grown single grain bulk (Gd,Dy)BCO superconductor was attained. The sufficient LP infiltration resulted in a greatly improved critical current and trapped field performance. Scaling of bulk volume flux pinning force was studied with the aim of identifying flux pinning mechanisms effectively occurring in the material.

Original languageEnglish
Article number093907
JournalJournal of Applied Physics
Issue number9
Publication statusPublished - 2019 Mar 7


ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this