Abstract
We have developed an LSI-based amperometric sensor called "Bio-LSI" with 400 measurement points as a platform for electrochemical bio-imaging and multi-point biosensing. The system is comprised of a 10.4 mm × 10.4 mm CMOS sensor chip with 20 × 20 unit cells, an external circuit box, a control unit for data acquisition, and a DC power box. Each unit cell of the chip contains an operational amplifier with a switched-capacitor type I-V converter for in-pixel signal amplification. We successfully realized a wide dynamic range from ±1 pA to ±100 nA with a well-organized circuit design and operating software. In particular, in-pixel signal amplification and an original program to control the signal read-out contribute to the lower detection limit and wide detection range of Bio-LSI. The spacial resolution is 250 μm and the temporal resolution is 18-125 ms/400 points, which depends on the desired current detection range. The coefficient of variance of the current for 400 points is within 5%. We also demonstrated the real-time imaging of a biological molecule using Bio-LSI. The LSI coated with an Os-HRP film was successfully applied to the monitoring of the changes of hydrogen peroxide concentration in a flow. The Os-HRP-coated LSI was spotted with glucose oxidase and used for bioelectrochemical imaging of the glucose oxidase (GOx)-catalyzed oxidation of glucose. Bio-LSI is a promising platform for a wide range of analytical fields, including diagnostics, environmental measurements and basic biochemistry.
Original language | English |
---|---|
Pages (from-to) | 3481-3490 |
Number of pages | 10 |
Journal | Lab on a Chip |
Volume | 12 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2012 Sept 21 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- Biochemistry
- Chemistry(all)
- Biomedical Engineering