TY - JOUR

T1 - Magnetic properties of two-dimensional dipolar squares

T2 - Boundary geometry dependence

AU - Sugano, Ryoko

AU - Matsushita, Katsuyoshi

AU - Kuroda, Akiyoshi

AU - Tomita, Yusuke

AU - Takayama, Hajime

N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.

PY - 2007/4

Y1 - 2007/4

N2 - By means of the molecular dynamics simulation of gradual cooling processes, we investigate magnetic properties of classical spin systems only with the magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on their finite-size effect, particularly their boundary geometry dependence, we study two finite dipolar squares cut out from a square lattice with Φ = 0 and π/4, where Φ is the angle between the direction of the lattice axis and that of the square boundary. Distinctly different results are obtained in the two dipolar squares. In the Φ = 0 square, the "from-edge-to- interior freezing" of spins is observed. Its ground state has a multidomain structure whose domains consist of two among infinitely (continuously) degenerated Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed parallel to the two lattice axes. In the Φ = π/4 square, on the other hand, the freezing starts from the interior of the square, and its ground state is nearly in a single domain with one of the two af-FMC orders. These geometry effects are argued to originate from the anisotropic nature of the dipole-dipole interaction, which depends on the relative direction of sites in the real space of the interacting spins.

AB - By means of the molecular dynamics simulation of gradual cooling processes, we investigate magnetic properties of classical spin systems only with the magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on their finite-size effect, particularly their boundary geometry dependence, we study two finite dipolar squares cut out from a square lattice with Φ = 0 and π/4, where Φ is the angle between the direction of the lattice axis and that of the square boundary. Distinctly different results are obtained in the two dipolar squares. In the Φ = 0 square, the "from-edge-to- interior freezing" of spins is observed. Its ground state has a multidomain structure whose domains consist of two among infinitely (continuously) degenerated Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed parallel to the two lattice axes. In the Φ = π/4 square, on the other hand, the freezing starts from the interior of the square, and its ground state is nearly in a single domain with one of the two af-FMC orders. These geometry effects are argued to originate from the anisotropic nature of the dipole-dipole interaction, which depends on the relative direction of sites in the real space of the interacting spins.

KW - Dipole-dipole interaction

KW - Freezing characteristics

KW - Magnetic nano-particle array

KW - Molecular dynamics simulation

UR - http://www.scopus.com/inward/record.url?scp=34247111394&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247111394&partnerID=8YFLogxK

U2 - 10.1143/JPSJ.76.044705

DO - 10.1143/JPSJ.76.044705

M3 - Article

AN - SCOPUS:34247111394

VL - 76

JO - Journal of the Physical Society of Japan

JF - Journal of the Physical Society of Japan

SN - 0031-9015

IS - 4

M1 - 044705

ER -