Microscopic and macroscopic investigation of localized surface plasmons on Ag nanoparticles embedded in porous TiO2 glass

Toshiaki Ogawa, Masasi Nakayama, Toshihiro Okamoto, Masanobu Haraguchi, Masuo Fukui, Shigeki Matsuo

Research output: Contribution to journalArticle

8 Citations (Scopus)


We have macroscopically and microscopically investigated the localized surface plasmons (LSPs) on Ag nanoparticles embedded in porous TiO2 glass. We have prepared TiO2 glass containing Ag nanoparticles (Ag/TiO2) by the sol-gel process and changed the porosity of the TiO2 glass by drying under a high vacuum condition. Using a spectrometer, we have macroscopically measured the absorption spectra (ABS) on all Ag nanoparticles and using near-field scanning optical microscopy (NSOM), we have microscopically measured the scattering spectra on a single Ag nanoparticle in the Ag/TiO2 after each drying process. Fitting the spectra derived from the numerical calculation based on the Mie theory to that evaluated from the ABS and the NSOM measurements, we have evaluated the deviation of the full width at half maximum evaluated by the experimental measurements from that derived from the theoretical calculation (ΔFWHM) and the bound (Hashin-Shtrikman bounds) of the porosity of the TiO2 glass by the use of the Hashin Shtrikman limit, similar to the literature [1]. It has been found that the ΔFWHM of the scattering spectra on the single Ag nanoparticle can be much smaller than one of the ABS on all Ag nanoparticles in the Ag/TiO2. This result is due to that the ABS is influenced by the aggregation and the size distribution of all Ag nanoparticles. Furthermore, on extrapolating from the plot of ΔFWHM vs porosity, the ΔFWHM is reduced to zero when the porosity is about 15%.

Original languageEnglish
Pages (from-to)S63-S66
JournalJournal of the Korean Physical Society
Issue numberSUPPL. 1
Publication statusPublished - 2005 Aug 1



  • Doped glass
  • Localized surface plasmons
  • Near-field scanning optical microscope
  • Sol-gel glass
  • TiO

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this