Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-AΔ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein

István Molnár, Kwang Pil Choi, Mitsuo Yamashita, Yoshikatsu Murooka

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

The Arthrobacter simplex gene coding for 3-ketosteroid-Δ1-dehydrogenase, a key enzyme in the degradation of the steroid nucleus, was cloned in Streptomyces lividans. Nucleotide sequence analysis revealed that the gene for 3-ketosteroid-Δ1-dehydrogenase (ksdD) is clustered with at least two more genes possibly involved in steroid metabolism. Upstream of ksdD, we found a gene, ksdR, encoding a hypothetical regulatory protein that shows homologies to KdgR, the negative regulator of pectin biodegradation in Erwinia, and GyIR, the activator for glycerol metabolism in Steptomyces. A helix-turn-helix DNA-binding domain can be predicted at similar positions near the N-terminal of KsdR, KdgR and GyIR. ksdl adjoining downstream to ksdD codes for a protein that has strong similarities to 3-ketosteroid-Δ5-isomerases. The highly conserved Tyr and Asp residues are present in the active-centre motif of the enzyme. The translated ksdD gene product was found to be similar to the 3-ketosteroid-Δ1-dehydrogenase of Pseudomonas testosteroni and to the fumarate reductase of Shewanella putrefaciens. A region highly conserved between the two steroid dehydrogenases can be aligned to the active-centre motif of the fumarate reductase. S. lividans strains carrying the ksdD gene overexpressed 3-ketosteroid-Δ1-dehydrogenase. The expression of 3-ketosteroid-Δ5-isomerase, however, was barely detectable in recombinant S. lividans strains carrying the ksdl gene, or in the parental Arthrobacter strain.

Original languageEnglish
Pages (from-to)895-905
Number of pages11
JournalMolecular Microbiology
Volume15
Issue number5
Publication statusPublished - 1995 Mar
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Microbiology

Cite this

@article{c2979e9ca5bb444f8648e539800dd870,
title = "Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-AΔ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein",
abstract = "The Arthrobacter simplex gene coding for 3-ketosteroid-Δ1-dehydrogenase, a key enzyme in the degradation of the steroid nucleus, was cloned in Streptomyces lividans. Nucleotide sequence analysis revealed that the gene for 3-ketosteroid-Δ1-dehydrogenase (ksdD) is clustered with at least two more genes possibly involved in steroid metabolism. Upstream of ksdD, we found a gene, ksdR, encoding a hypothetical regulatory protein that shows homologies to KdgR, the negative regulator of pectin biodegradation in Erwinia, and GyIR, the activator for glycerol metabolism in Steptomyces. A helix-turn-helix DNA-binding domain can be predicted at similar positions near the N-terminal of KsdR, KdgR and GyIR. ksdl adjoining downstream to ksdD codes for a protein that has strong similarities to 3-ketosteroid-Δ5-isomerases. The highly conserved Tyr and Asp residues are present in the active-centre motif of the enzyme. The translated ksdD gene product was found to be similar to the 3-ketosteroid-Δ1-dehydrogenase of Pseudomonas testosteroni and to the fumarate reductase of Shewanella putrefaciens. A region highly conserved between the two steroid dehydrogenases can be aligned to the active-centre motif of the fumarate reductase. S. lividans strains carrying the ksdD gene overexpressed 3-ketosteroid-Δ1-dehydrogenase. The expression of 3-ketosteroid-Δ5-isomerase, however, was barely detectable in recombinant S. lividans strains carrying the ksdl gene, or in the parental Arthrobacter strain.",
author = "Istv{\'a}n Moln{\'a}r and Choi, {Kwang Pil} and Mitsuo Yamashita and Yoshikatsu Murooka",
year = "1995",
month = "3",
language = "English",
volume = "15",
pages = "895--905",
journal = "Molecular Microbiology",
issn = "0950-382X",
publisher = "Wiley-Blackwell",
number = "5",

}

TY - JOUR

T1 - Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-AΔ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein

AU - Molnár, István

AU - Choi, Kwang Pil

AU - Yamashita, Mitsuo

AU - Murooka, Yoshikatsu

PY - 1995/3

Y1 - 1995/3

N2 - The Arthrobacter simplex gene coding for 3-ketosteroid-Δ1-dehydrogenase, a key enzyme in the degradation of the steroid nucleus, was cloned in Streptomyces lividans. Nucleotide sequence analysis revealed that the gene for 3-ketosteroid-Δ1-dehydrogenase (ksdD) is clustered with at least two more genes possibly involved in steroid metabolism. Upstream of ksdD, we found a gene, ksdR, encoding a hypothetical regulatory protein that shows homologies to KdgR, the negative regulator of pectin biodegradation in Erwinia, and GyIR, the activator for glycerol metabolism in Steptomyces. A helix-turn-helix DNA-binding domain can be predicted at similar positions near the N-terminal of KsdR, KdgR and GyIR. ksdl adjoining downstream to ksdD codes for a protein that has strong similarities to 3-ketosteroid-Δ5-isomerases. The highly conserved Tyr and Asp residues are present in the active-centre motif of the enzyme. The translated ksdD gene product was found to be similar to the 3-ketosteroid-Δ1-dehydrogenase of Pseudomonas testosteroni and to the fumarate reductase of Shewanella putrefaciens. A region highly conserved between the two steroid dehydrogenases can be aligned to the active-centre motif of the fumarate reductase. S. lividans strains carrying the ksdD gene overexpressed 3-ketosteroid-Δ1-dehydrogenase. The expression of 3-ketosteroid-Δ5-isomerase, however, was barely detectable in recombinant S. lividans strains carrying the ksdl gene, or in the parental Arthrobacter strain.

AB - The Arthrobacter simplex gene coding for 3-ketosteroid-Δ1-dehydrogenase, a key enzyme in the degradation of the steroid nucleus, was cloned in Streptomyces lividans. Nucleotide sequence analysis revealed that the gene for 3-ketosteroid-Δ1-dehydrogenase (ksdD) is clustered with at least two more genes possibly involved in steroid metabolism. Upstream of ksdD, we found a gene, ksdR, encoding a hypothetical regulatory protein that shows homologies to KdgR, the negative regulator of pectin biodegradation in Erwinia, and GyIR, the activator for glycerol metabolism in Steptomyces. A helix-turn-helix DNA-binding domain can be predicted at similar positions near the N-terminal of KsdR, KdgR and GyIR. ksdl adjoining downstream to ksdD codes for a protein that has strong similarities to 3-ketosteroid-Δ5-isomerases. The highly conserved Tyr and Asp residues are present in the active-centre motif of the enzyme. The translated ksdD gene product was found to be similar to the 3-ketosteroid-Δ1-dehydrogenase of Pseudomonas testosteroni and to the fumarate reductase of Shewanella putrefaciens. A region highly conserved between the two steroid dehydrogenases can be aligned to the active-centre motif of the fumarate reductase. S. lividans strains carrying the ksdD gene overexpressed 3-ketosteroid-Δ1-dehydrogenase. The expression of 3-ketosteroid-Δ5-isomerase, however, was barely detectable in recombinant S. lividans strains carrying the ksdl gene, or in the parental Arthrobacter strain.

UR - http://www.scopus.com/inward/record.url?scp=0028960853&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028960853&partnerID=8YFLogxK

M3 - Article

VL - 15

SP - 895

EP - 905

JO - Molecular Microbiology

JF - Molecular Microbiology

SN - 0950-382X

IS - 5

ER -