Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion

Tomoyuki Azuma, Ryuichi Ohmori, Yuji Teramura, Takahiro Ishizaki, Madoka Takai

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Polymer brush, owing to its precisely controllable nanostructure, has great potential for surface modification in the biomedical field. In this study, we evaluated the bio-inertness of polymer brush, monomer monolayers, and polymer-coated surfaces based on their structures, to identify the most effective bio-inert modification. We focused on two well-known bio-inert materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol (EG). The amount of adsorbed proteins on the surface was found to be dependent on the monomer unit density in the case of MPC, whereas this correlation was not observed in the case of EG. Cell adhesion was suppressed on the brush structure of both MPC and EG units, regardless of their density. The brush structure of MPC and EG units showed better anti-protein- and anti-cell-adhesion than monolayers and polymer-coated surfaces. Thus, the steric repulsion was not only important in EG units-based surface, but also in MPC-based surface. In addition, multiple polymer layers formed by MPC-based polymer coating also displayed similar properties.

Original languageEnglish
Pages (from-to)655-661
Number of pages7
JournalColloids and Surfaces B: Biointerfaces
Volume159
DOIs
Publication statusPublished - 2017 Nov 1

Fingerprint

Ethylene Glycol
Cell adhesion
Ethylene glycol
Phosphorylcholine
Surface treatment
glycols
Polymers
adhesion
ethylene
brushes
Brushes
proteins
Proteins
polymers
cells
Monolayers
monomers
Monomers
2-methacryloyloxyethyl phosphorylcholine
Nanostructures

Keywords

  • Cell adhesion
  • Monolayer
  • MPC polymer
  • PEG
  • Polymer brush
  • Polymer coating

ASJC Scopus subject areas

  • Biotechnology
  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Cite this

Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion. / Azuma, Tomoyuki; Ohmori, Ryuichi; Teramura, Yuji; Ishizaki, Takahiro; Takai, Madoka.

In: Colloids and Surfaces B: Biointerfaces, Vol. 159, 01.11.2017, p. 655-661.

Research output: Contribution to journalArticle

@article{87e0a7001359421d9e40a75b6e3d501f,
title = "Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion",
abstract = "Polymer brush, owing to its precisely controllable nanostructure, has great potential for surface modification in the biomedical field. In this study, we evaluated the bio-inertness of polymer brush, monomer monolayers, and polymer-coated surfaces based on their structures, to identify the most effective bio-inert modification. We focused on two well-known bio-inert materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol (EG). The amount of adsorbed proteins on the surface was found to be dependent on the monomer unit density in the case of MPC, whereas this correlation was not observed in the case of EG. Cell adhesion was suppressed on the brush structure of both MPC and EG units, regardless of their density. The brush structure of MPC and EG units showed better anti-protein- and anti-cell-adhesion than monolayers and polymer-coated surfaces. Thus, the steric repulsion was not only important in EG units-based surface, but also in MPC-based surface. In addition, multiple polymer layers formed by MPC-based polymer coating also displayed similar properties.",
keywords = "Cell adhesion, Monolayer, MPC polymer, PEG, Polymer brush, Polymer coating",
author = "Tomoyuki Azuma and Ryuichi Ohmori and Yuji Teramura and Takahiro Ishizaki and Madoka Takai",
year = "2017",
month = "11",
day = "1",
doi = "10.1016/j.colsurfb.2017.08.039",
language = "English",
volume = "159",
pages = "655--661",
journal = "Colloids and Surfaces B: Biointerfaces",
issn = "0927-7765",
publisher = "Elsevier",

}

TY - JOUR

T1 - Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion

AU - Azuma, Tomoyuki

AU - Ohmori, Ryuichi

AU - Teramura, Yuji

AU - Ishizaki, Takahiro

AU - Takai, Madoka

PY - 2017/11/1

Y1 - 2017/11/1

N2 - Polymer brush, owing to its precisely controllable nanostructure, has great potential for surface modification in the biomedical field. In this study, we evaluated the bio-inertness of polymer brush, monomer monolayers, and polymer-coated surfaces based on their structures, to identify the most effective bio-inert modification. We focused on two well-known bio-inert materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol (EG). The amount of adsorbed proteins on the surface was found to be dependent on the monomer unit density in the case of MPC, whereas this correlation was not observed in the case of EG. Cell adhesion was suppressed on the brush structure of both MPC and EG units, regardless of their density. The brush structure of MPC and EG units showed better anti-protein- and anti-cell-adhesion than monolayers and polymer-coated surfaces. Thus, the steric repulsion was not only important in EG units-based surface, but also in MPC-based surface. In addition, multiple polymer layers formed by MPC-based polymer coating also displayed similar properties.

AB - Polymer brush, owing to its precisely controllable nanostructure, has great potential for surface modification in the biomedical field. In this study, we evaluated the bio-inertness of polymer brush, monomer monolayers, and polymer-coated surfaces based on their structures, to identify the most effective bio-inert modification. We focused on two well-known bio-inert materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol (EG). The amount of adsorbed proteins on the surface was found to be dependent on the monomer unit density in the case of MPC, whereas this correlation was not observed in the case of EG. Cell adhesion was suppressed on the brush structure of both MPC and EG units, regardless of their density. The brush structure of MPC and EG units showed better anti-protein- and anti-cell-adhesion than monolayers and polymer-coated surfaces. Thus, the steric repulsion was not only important in EG units-based surface, but also in MPC-based surface. In addition, multiple polymer layers formed by MPC-based polymer coating also displayed similar properties.

KW - Cell adhesion

KW - Monolayer

KW - MPC polymer

KW - PEG

KW - Polymer brush

KW - Polymer coating

UR - http://www.scopus.com/inward/record.url?scp=85028555466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85028555466&partnerID=8YFLogxK

U2 - 10.1016/j.colsurfb.2017.08.039

DO - 10.1016/j.colsurfb.2017.08.039

M3 - Article

C2 - 28866413

AN - SCOPUS:85028555466

VL - 159

SP - 655

EP - 661

JO - Colloids and Surfaces B: Biointerfaces

JF - Colloids and Surfaces B: Biointerfaces

SN - 0927-7765

ER -