### Abstract

We prove the following: (1) Let G be a graph with a 1-factor and let F be an arbitrary 1-factor of G. If G \ {a,b} is k-extendable for each ab ∈ F, then G is k-extendable. (2) Let G be a graph and let M be an arbitrary maximal matching of G. If G \ {a, b} is k-factor-critical for each ab ∈ M, then G is k-factor-critical.

Original language | English |
---|---|

Pages (from-to) | 285-290 |

Number of pages | 6 |

Journal | Discrete Mathematics |

Volume | 222 |

Issue number | 1-3 |

DOIs | |

Publication status | Published - 2000 Jul 28 |

### Keywords

- 1-factor
- Matching
- k-extendable
- k-factor-critical

### ASJC Scopus subject areas

- Theoretical Computer Science
- Discrete Mathematics and Combinatorics

## Fingerprint Dive into the research topics of 'On 1-factors and matching extension'. Together they form a unique fingerprint.

## Cite this

Nishimura, T. (2000). On 1-factors and matching extension.

*Discrete Mathematics*,*222*(1-3), 285-290. https://doi.org/10.1016/S0012-365X(00)00057-1