On 1-factors and matching extension

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We prove the following: (1) Let G be a graph with a 1-factor and let F be an arbitrary 1-factor of G. If G \ {a,b} is k-extendable for each ab ∈ F, then G is k-extendable. (2) Let G be a graph and let M be an arbitrary maximal matching of G. If G \ {a, b} is k-factor-critical for each ab ∈ M, then G is k-factor-critical.

Original languageEnglish
Pages (from-to)285-290
Number of pages6
JournalDiscrete Mathematics
Volume222
Issue number1-3
Publication statusPublished - 2000 Jul 28

Keywords

  • 1-factor
  • k-extendable
  • k-factor-critical
  • Matching

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

On 1-factors and matching extension. / Nishimura, Tsuyoshi.

In: Discrete Mathematics, Vol. 222, No. 1-3, 28.07.2000, p. 285-290.

Research output: Contribution to journalArticle

Nishimura, Tsuyoshi. / On 1-factors and matching extension. In: Discrete Mathematics. 2000 ; Vol. 222, No. 1-3. pp. 285-290.
@article{f52b63dbe9c146b3be5dcac50a585e23,
title = "On 1-factors and matching extension",
abstract = "We prove the following: (1) Let G be a graph with a 1-factor and let F be an arbitrary 1-factor of G. If G \ {a,b} is k-extendable for each ab ∈ F, then G is k-extendable. (2) Let G be a graph and let M be an arbitrary maximal matching of G. If G \ {a, b} is k-factor-critical for each ab ∈ M, then G is k-factor-critical.",
keywords = "1-factor, k-extendable, k-factor-critical, Matching",
author = "Tsuyoshi Nishimura",
year = "2000",
month = "7",
day = "28",
language = "English",
volume = "222",
pages = "285--290",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - On 1-factors and matching extension

AU - Nishimura, Tsuyoshi

PY - 2000/7/28

Y1 - 2000/7/28

N2 - We prove the following: (1) Let G be a graph with a 1-factor and let F be an arbitrary 1-factor of G. If G \ {a,b} is k-extendable for each ab ∈ F, then G is k-extendable. (2) Let G be a graph and let M be an arbitrary maximal matching of G. If G \ {a, b} is k-factor-critical for each ab ∈ M, then G is k-factor-critical.

AB - We prove the following: (1) Let G be a graph with a 1-factor and let F be an arbitrary 1-factor of G. If G \ {a,b} is k-extendable for each ab ∈ F, then G is k-extendable. (2) Let G be a graph and let M be an arbitrary maximal matching of G. If G \ {a, b} is k-factor-critical for each ab ∈ M, then G is k-factor-critical.

KW - 1-factor

KW - k-extendable

KW - k-factor-critical

KW - Matching

UR - http://www.scopus.com/inward/record.url?scp=0347646890&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0347646890&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0347646890

VL - 222

SP - 285

EP - 290

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -