On a problem of Bleicher and Erdös

Hisashi Yokota

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Let D(a, N) = min{nk: a K = ∑1k 1 n1, n1 < n2 < ⋯ < nk, n1 ∈ Z0}, where the minimum ranges over all Egyptian fraction expansions of a N and let D(N) = max{D(a, N): 1 ≤ a < N}. Then D(N) N ≤ (log N)1 + δ(N), δ(N) → 0 as N → ∞, establishing a conjecture of M. N. Bleicher and P. Erdös.

Original languageEnglish
Pages (from-to)198-207
Number of pages10
JournalJournal of Number Theory
Volume30
Issue number2
DOIs
Publication statusPublished - 1988
Externally publishedYes

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

On a problem of Bleicher and Erdös. / Yokota, Hisashi.

In: Journal of Number Theory, Vol. 30, No. 2, 1988, p. 198-207.

Research output: Contribution to journalArticle

Yokota, Hisashi. / On a problem of Bleicher and Erdös. In: Journal of Number Theory. 1988 ; Vol. 30, No. 2. pp. 198-207.
@article{e701507d593845a5a7e2dfcc8e5ef117,
title = "On a problem of Bleicher and Erd{\"o}s",
abstract = "Let D(a, N) = min{nk: a K = ∑1k 1 n1, n1 < n2 < ⋯ < nk, n1 ∈ Z0}, where the minimum ranges over all Egyptian fraction expansions of a N and let D(N) = max{D(a, N): 1 ≤ a < N}. Then D(N) N ≤ (log N)1 + δ(N), δ(N) → 0 as N → ∞, establishing a conjecture of M. N. Bleicher and P. Erd{\"o}s.",
author = "Hisashi Yokota",
year = "1988",
doi = "10.1016/0022-314X(88)90017-0",
language = "English",
volume = "30",
pages = "198--207",
journal = "Journal of Number Theory",
issn = "0022-314X",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - On a problem of Bleicher and Erdös

AU - Yokota, Hisashi

PY - 1988

Y1 - 1988

N2 - Let D(a, N) = min{nk: a K = ∑1k 1 n1, n1 < n2 < ⋯ < nk, n1 ∈ Z0}, where the minimum ranges over all Egyptian fraction expansions of a N and let D(N) = max{D(a, N): 1 ≤ a < N}. Then D(N) N ≤ (log N)1 + δ(N), δ(N) → 0 as N → ∞, establishing a conjecture of M. N. Bleicher and P. Erdös.

AB - Let D(a, N) = min{nk: a K = ∑1k 1 n1, n1 < n2 < ⋯ < nk, n1 ∈ Z0}, where the minimum ranges over all Egyptian fraction expansions of a N and let D(N) = max{D(a, N): 1 ≤ a < N}. Then D(N) N ≤ (log N)1 + δ(N), δ(N) → 0 as N → ∞, establishing a conjecture of M. N. Bleicher and P. Erdös.

UR - http://www.scopus.com/inward/record.url?scp=45449125541&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45449125541&partnerID=8YFLogxK

U2 - 10.1016/0022-314X(88)90017-0

DO - 10.1016/0022-314X(88)90017-0

M3 - Article

VL - 30

SP - 198

EP - 207

JO - Journal of Number Theory

JF - Journal of Number Theory

SN - 0022-314X

IS - 2

ER -