Optimal pulse patterns of a nine-phase voltage source PWM inverter for use with triple three-phase wound AC motor

Hiroshi Takami, Hisao Matsumoto

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The authors have already described the nine-phase inverter driving system providing both the triple three-phase voltage source inverter with 180-deg conducting period and the ac motor windings with triple three-phase construction. The nine-pulse inverter driving system used three small-capacity three-phase coupling reactors having special windings for current balance and reduction of higher harmonics. In addition, for voltage control, current balance, and waveform improvement, optimal PWM pulse patterns were applied the six-phase inverter driving system using a three-phase coupling reactor to provide double three-phase construction. In the system based on the mode in the title, the PWM control was applied to the nine-phase inverter driving system described in the foregoing. The coupling reactors in the system balance the fundamental currents of three sets of three-phase inverters and also absorb higher harmonic voltages other than 18p±1 (p = 1, 2. ...) orders. The optimal pulse patterns found by the approach to make the performance index minimum using the Lagrange multiplier method can be applied to the PWM to reduce the higher harmonic currents greater than those calculated by the modulation method comparing the sinusoidal signal wave with triangular carrier signal. This system can have a larger capacity than the six-phase PWM inverter driving system in which coupling reactors absorb higher harmonic voltages other than the 12p±1 orders and also improve output current waveforms. In addition, the system includes the capacity of coupling reactors slightly larger than the six-phase PWM inverter driving system but enables operation with smaller torque ripples and electromagnetic noises in low- to high-frequency ranges.

Original languageEnglish
Pages (from-to)102-113
Number of pages12
JournalElectrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
Volume113
Issue number6
Publication statusPublished - 1993 Oct
Externally publishedYes

Fingerprint

AC motors
Pulse width modulation
Electric potential
Lagrange multipliers
Voltage control
Torque
Modulation

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

@article{31c7333874674b82ab09fb31ffd91b48,
title = "Optimal pulse patterns of a nine-phase voltage source PWM inverter for use with triple three-phase wound AC motor",
abstract = "The authors have already described the nine-phase inverter driving system providing both the triple three-phase voltage source inverter with 180-deg conducting period and the ac motor windings with triple three-phase construction. The nine-pulse inverter driving system used three small-capacity three-phase coupling reactors having special windings for current balance and reduction of higher harmonics. In addition, for voltage control, current balance, and waveform improvement, optimal PWM pulse patterns were applied the six-phase inverter driving system using a three-phase coupling reactor to provide double three-phase construction. In the system based on the mode in the title, the PWM control was applied to the nine-phase inverter driving system described in the foregoing. The coupling reactors in the system balance the fundamental currents of three sets of three-phase inverters and also absorb higher harmonic voltages other than 18p±1 (p = 1, 2. ...) orders. The optimal pulse patterns found by the approach to make the performance index minimum using the Lagrange multiplier method can be applied to the PWM to reduce the higher harmonic currents greater than those calculated by the modulation method comparing the sinusoidal signal wave with triangular carrier signal. This system can have a larger capacity than the six-phase PWM inverter driving system in which coupling reactors absorb higher harmonic voltages other than the 12p±1 orders and also improve output current waveforms. In addition, the system includes the capacity of coupling reactors slightly larger than the six-phase PWM inverter driving system but enables operation with smaller torque ripples and electromagnetic noises in low- to high-frequency ranges.",
author = "Hiroshi Takami and Hisao Matsumoto",
year = "1993",
month = "10",
language = "English",
volume = "113",
pages = "102--113",
journal = "Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)",
issn = "0424-7760",
publisher = "John Wiley and Sons Inc.",
number = "6",

}

TY - JOUR

T1 - Optimal pulse patterns of a nine-phase voltage source PWM inverter for use with triple three-phase wound AC motor

AU - Takami, Hiroshi

AU - Matsumoto, Hisao

PY - 1993/10

Y1 - 1993/10

N2 - The authors have already described the nine-phase inverter driving system providing both the triple three-phase voltage source inverter with 180-deg conducting period and the ac motor windings with triple three-phase construction. The nine-pulse inverter driving system used three small-capacity three-phase coupling reactors having special windings for current balance and reduction of higher harmonics. In addition, for voltage control, current balance, and waveform improvement, optimal PWM pulse patterns were applied the six-phase inverter driving system using a three-phase coupling reactor to provide double three-phase construction. In the system based on the mode in the title, the PWM control was applied to the nine-phase inverter driving system described in the foregoing. The coupling reactors in the system balance the fundamental currents of three sets of three-phase inverters and also absorb higher harmonic voltages other than 18p±1 (p = 1, 2. ...) orders. The optimal pulse patterns found by the approach to make the performance index minimum using the Lagrange multiplier method can be applied to the PWM to reduce the higher harmonic currents greater than those calculated by the modulation method comparing the sinusoidal signal wave with triangular carrier signal. This system can have a larger capacity than the six-phase PWM inverter driving system in which coupling reactors absorb higher harmonic voltages other than the 12p±1 orders and also improve output current waveforms. In addition, the system includes the capacity of coupling reactors slightly larger than the six-phase PWM inverter driving system but enables operation with smaller torque ripples and electromagnetic noises in low- to high-frequency ranges.

AB - The authors have already described the nine-phase inverter driving system providing both the triple three-phase voltage source inverter with 180-deg conducting period and the ac motor windings with triple three-phase construction. The nine-pulse inverter driving system used three small-capacity three-phase coupling reactors having special windings for current balance and reduction of higher harmonics. In addition, for voltage control, current balance, and waveform improvement, optimal PWM pulse patterns were applied the six-phase inverter driving system using a three-phase coupling reactor to provide double three-phase construction. In the system based on the mode in the title, the PWM control was applied to the nine-phase inverter driving system described in the foregoing. The coupling reactors in the system balance the fundamental currents of three sets of three-phase inverters and also absorb higher harmonic voltages other than 18p±1 (p = 1, 2. ...) orders. The optimal pulse patterns found by the approach to make the performance index minimum using the Lagrange multiplier method can be applied to the PWM to reduce the higher harmonic currents greater than those calculated by the modulation method comparing the sinusoidal signal wave with triangular carrier signal. This system can have a larger capacity than the six-phase PWM inverter driving system in which coupling reactors absorb higher harmonic voltages other than the 12p±1 orders and also improve output current waveforms. In addition, the system includes the capacity of coupling reactors slightly larger than the six-phase PWM inverter driving system but enables operation with smaller torque ripples and electromagnetic noises in low- to high-frequency ranges.

UR - http://www.scopus.com/inward/record.url?scp=0027682445&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027682445&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0027682445

VL - 113

SP - 102

EP - 113

JO - Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)

JF - Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)

SN - 0424-7760

IS - 6

ER -