Optimization of growth parameters for fabricating single grain (Gd, Dy)BCO bulk superconductors in top-seeded infiltration growth process

S. Pavan Kumar Naik, Muralidhar Miryala, Masato Murakami

Research output: Contribution to journalConference article

2 Citations (Scopus)

Abstract

Fabrication of single grain bulk REBa2Cu3O7-δ (REBCO) superconductors with superior performance along with shape retaining is a recent topic. Mixed REBCO superconductors produced in melt growth (MG) technique had showed enhanced superconducting performance. However, this process offers many disadvantages such as macro-porosity, shrinkage in final products, inhomogeneous distribution of 211 secondary phase particles etc., which limit many practical applications. Infiltration growth (IG) process is advanced and superior to MG technique in several aspects. Recently, we fabricated (Gd, Dy)Ba2Cu3O7-δ ((Gd, Dy)BCO) bulk superconductors through systematic addition of Dy2BaCuO5 (Dy-211) content. The addition of 20 wt.% of Dy-211 in GdBCO was found to be optimum which resulted in enhanced superconducting performance. In the present work, in order to determine a suitable temperature window for fabrication of large single grain (Gd, Dy)BCO bulk superconductors, isothermal experiments were carried out at several constant temperatures in top-seeded IG process in air atmosphere. Systematic microstructural and magnetic properties were assessed and analysed. The 211 secondary phase particles are enlarged to as high as ∼ 25 μm when the sample assembly is dwelled at high temperatures and reduced to ∼ 2 μm-4 μm in the samples dwelled at lower temperatures. Main emphasis will be given on the growth rate progress and difficulties involved in IG processing of mixed REBCO superconductors.

Original languageEnglish
Article number012048
JournalJournal of Physics: Conference Series
Volume1054
Issue number1
DOIs
Publication statusPublished - 2018 Jul 26
Event30th International Symposium on Superconductivity, ISS 2017 - Tokyo, Japan
Duration: 2017 Dec 132017 Dec 15

Fingerprint

infiltration
optimization
fabrication
retaining
shrinkage
assembly
magnetic properties
porosity
atmospheres
temperature
air
products

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

@article{598471ac6d43409ea4e2a9562d284735,
title = "Optimization of growth parameters for fabricating single grain (Gd, Dy)BCO bulk superconductors in top-seeded infiltration growth process",
abstract = "Fabrication of single grain bulk REBa2Cu3O7-δ (REBCO) superconductors with superior performance along with shape retaining is a recent topic. Mixed REBCO superconductors produced in melt growth (MG) technique had showed enhanced superconducting performance. However, this process offers many disadvantages such as macro-porosity, shrinkage in final products, inhomogeneous distribution of 211 secondary phase particles etc., which limit many practical applications. Infiltration growth (IG) process is advanced and superior to MG technique in several aspects. Recently, we fabricated (Gd, Dy)Ba2Cu3O7-δ ((Gd, Dy)BCO) bulk superconductors through systematic addition of Dy2BaCuO5 (Dy-211) content. The addition of 20 wt.{\%} of Dy-211 in GdBCO was found to be optimum which resulted in enhanced superconducting performance. In the present work, in order to determine a suitable temperature window for fabrication of large single grain (Gd, Dy)BCO bulk superconductors, isothermal experiments were carried out at several constant temperatures in top-seeded IG process in air atmosphere. Systematic microstructural and magnetic properties were assessed and analysed. The 211 secondary phase particles are enlarged to as high as ∼ 25 μm when the sample assembly is dwelled at high temperatures and reduced to ∼ 2 μm-4 μm in the samples dwelled at lower temperatures. Main emphasis will be given on the growth rate progress and difficulties involved in IG processing of mixed REBCO superconductors.",
author = "{Pavan Kumar Naik}, S. and Muralidhar Miryala and Masato Murakami",
year = "2018",
month = "7",
day = "26",
doi = "10.1088/1742-6596/1054/1/012048",
language = "English",
volume = "1054",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - Optimization of growth parameters for fabricating single grain (Gd, Dy)BCO bulk superconductors in top-seeded infiltration growth process

AU - Pavan Kumar Naik, S.

AU - Miryala, Muralidhar

AU - Murakami, Masato

PY - 2018/7/26

Y1 - 2018/7/26

N2 - Fabrication of single grain bulk REBa2Cu3O7-δ (REBCO) superconductors with superior performance along with shape retaining is a recent topic. Mixed REBCO superconductors produced in melt growth (MG) technique had showed enhanced superconducting performance. However, this process offers many disadvantages such as macro-porosity, shrinkage in final products, inhomogeneous distribution of 211 secondary phase particles etc., which limit many practical applications. Infiltration growth (IG) process is advanced and superior to MG technique in several aspects. Recently, we fabricated (Gd, Dy)Ba2Cu3O7-δ ((Gd, Dy)BCO) bulk superconductors through systematic addition of Dy2BaCuO5 (Dy-211) content. The addition of 20 wt.% of Dy-211 in GdBCO was found to be optimum which resulted in enhanced superconducting performance. In the present work, in order to determine a suitable temperature window for fabrication of large single grain (Gd, Dy)BCO bulk superconductors, isothermal experiments were carried out at several constant temperatures in top-seeded IG process in air atmosphere. Systematic microstructural and magnetic properties were assessed and analysed. The 211 secondary phase particles are enlarged to as high as ∼ 25 μm when the sample assembly is dwelled at high temperatures and reduced to ∼ 2 μm-4 μm in the samples dwelled at lower temperatures. Main emphasis will be given on the growth rate progress and difficulties involved in IG processing of mixed REBCO superconductors.

AB - Fabrication of single grain bulk REBa2Cu3O7-δ (REBCO) superconductors with superior performance along with shape retaining is a recent topic. Mixed REBCO superconductors produced in melt growth (MG) technique had showed enhanced superconducting performance. However, this process offers many disadvantages such as macro-porosity, shrinkage in final products, inhomogeneous distribution of 211 secondary phase particles etc., which limit many practical applications. Infiltration growth (IG) process is advanced and superior to MG technique in several aspects. Recently, we fabricated (Gd, Dy)Ba2Cu3O7-δ ((Gd, Dy)BCO) bulk superconductors through systematic addition of Dy2BaCuO5 (Dy-211) content. The addition of 20 wt.% of Dy-211 in GdBCO was found to be optimum which resulted in enhanced superconducting performance. In the present work, in order to determine a suitable temperature window for fabrication of large single grain (Gd, Dy)BCO bulk superconductors, isothermal experiments were carried out at several constant temperatures in top-seeded IG process in air atmosphere. Systematic microstructural and magnetic properties were assessed and analysed. The 211 secondary phase particles are enlarged to as high as ∼ 25 μm when the sample assembly is dwelled at high temperatures and reduced to ∼ 2 μm-4 μm in the samples dwelled at lower temperatures. Main emphasis will be given on the growth rate progress and difficulties involved in IG processing of mixed REBCO superconductors.

UR - http://www.scopus.com/inward/record.url?scp=85051359453&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85051359453&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/1054/1/012048

DO - 10.1088/1742-6596/1054/1/012048

M3 - Conference article

VL - 1054

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - 1

M1 - 012048

ER -