Optimization of the electrode arrangement and reliable fabrication of flexible ehd pumps

Yumeta Seki, Yu Kuwajima, Hiroki Shigemune, Yuhei Yamada, Shingo Maeda

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Soft robots have great potential to realize machines that interact and coexist with humans. A key technology to realize soft robots is soft fluidic actuators. Previously, we developed a soft pump using the elec-trohydrodynamics (EHD) phenomenon. EHD is a flow phenomenon, which is generated by applying a high voltage to a dielectric fluid. In this study, we developed flexible high-power-density EHD pumps. First, a pump was fabricated by a simple design with interdigitated electrodes. Second, a mathematical model was used to analyze the pressure generated per length assuming that electric fields only act between neighboring electrodes in a flexible EHD pump with interdigitated electrodes. The results were used to optimize the gap between electrodes to maximize the pressure per length. Third, we used the optimized process to fabricate multiple flexible EHD pumps. The procedure produced pumps easily and reliably. Fourth, we com-pared the experimental values with the analytical solutions. The good agreement confirmed that the generated pressure per unit length can be approximated in a uniform electric field between neighboring electrodes. Because our flexible EHD pump can operate even when deformed, it has potential for wearable device applications.

Original languageEnglish
Pages (from-to)939-946
Number of pages8
JournalJournal of Robotics and Mechatronics
Volume32
Issue number5
DOIs
Publication statusPublished - 2020

Keywords

  • Finite element analysis
  • Flexible EHD pump
  • Interdigitated electrode
  • Reliable fabrication

ASJC Scopus subject areas

  • Computer Science(all)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Optimization of the electrode arrangement and reliable fabrication of flexible ehd pumps'. Together they form a unique fingerprint.

Cite this