Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering

J. T. Okada, P. H L Sit, Y. Watanabe, Y. J. Wang, B. Barbiellini, T. Ishikawa, M. Itou, Y. Sakurai, A. Bansil, R. Ishikawa, M. Hamaishi, Tadahiko Masaki, P. F. Paradis, K. Kimura, T. Ishikawa, S. Nanao

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Metallic liquid silicon at 1787 K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.

Original languageEnglish
Article number067402
JournalPhysical Review Letters
Volume108
Issue number6
DOIs
Publication statusPublished - 2012 Feb 8

Fingerprint

x ray scattering
inelastic scattering
silicon
liquids
covalent bonds
scattering
liquid phases
occurrences
molecular dynamics
probes
x rays
simulation

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Okada, J. T., Sit, P. H. L., Watanabe, Y., Wang, Y. J., Barbiellini, B., Ishikawa, T., ... Nanao, S. (2012). Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering. Physical Review Letters, 108(6), [067402]. https://doi.org/10.1103/PhysRevLett.108.067402

Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering. / Okada, J. T.; Sit, P. H L; Watanabe, Y.; Wang, Y. J.; Barbiellini, B.; Ishikawa, T.; Itou, M.; Sakurai, Y.; Bansil, A.; Ishikawa, R.; Hamaishi, M.; Masaki, Tadahiko; Paradis, P. F.; Kimura, K.; Ishikawa, T.; Nanao, S.

In: Physical Review Letters, Vol. 108, No. 6, 067402, 08.02.2012.

Research output: Contribution to journalArticle

Okada, JT, Sit, PHL, Watanabe, Y, Wang, YJ, Barbiellini, B, Ishikawa, T, Itou, M, Sakurai, Y, Bansil, A, Ishikawa, R, Hamaishi, M, Masaki, T, Paradis, PF, Kimura, K, Ishikawa, T & Nanao, S 2012, 'Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering', Physical Review Letters, vol. 108, no. 6, 067402. https://doi.org/10.1103/PhysRevLett.108.067402
Okada JT, Sit PHL, Watanabe Y, Wang YJ, Barbiellini B, Ishikawa T et al. Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering. Physical Review Letters. 2012 Feb 8;108(6). 067402. https://doi.org/10.1103/PhysRevLett.108.067402
Okada, J. T. ; Sit, P. H L ; Watanabe, Y. ; Wang, Y. J. ; Barbiellini, B. ; Ishikawa, T. ; Itou, M. ; Sakurai, Y. ; Bansil, A. ; Ishikawa, R. ; Hamaishi, M. ; Masaki, Tadahiko ; Paradis, P. F. ; Kimura, K. ; Ishikawa, T. ; Nanao, S. / Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering. In: Physical Review Letters. 2012 ; Vol. 108, No. 6.
@article{e992b758ef1e46d4a80c1e567332a0cf,
title = "Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering",
abstract = "Metallic liquid silicon at 1787 K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17{\%} via a maximally localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.",
author = "Okada, {J. T.} and Sit, {P. H L} and Y. Watanabe and Wang, {Y. J.} and B. Barbiellini and T. Ishikawa and M. Itou and Y. Sakurai and A. Bansil and R. Ishikawa and M. Hamaishi and Tadahiko Masaki and Paradis, {P. F.} and K. Kimura and T. Ishikawa and S. Nanao",
year = "2012",
month = "2",
day = "8",
doi = "10.1103/PhysRevLett.108.067402",
language = "English",
volume = "108",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "6",

}

TY - JOUR

T1 - Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering

AU - Okada, J. T.

AU - Sit, P. H L

AU - Watanabe, Y.

AU - Wang, Y. J.

AU - Barbiellini, B.

AU - Ishikawa, T.

AU - Itou, M.

AU - Sakurai, Y.

AU - Bansil, A.

AU - Ishikawa, R.

AU - Hamaishi, M.

AU - Masaki, Tadahiko

AU - Paradis, P. F.

AU - Kimura, K.

AU - Ishikawa, T.

AU - Nanao, S.

PY - 2012/2/8

Y1 - 2012/2/8

N2 - Metallic liquid silicon at 1787 K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.

AB - Metallic liquid silicon at 1787 K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.

UR - http://www.scopus.com/inward/record.url?scp=84863116267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863116267&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.108.067402

DO - 10.1103/PhysRevLett.108.067402

M3 - Article

C2 - 22401121

AN - SCOPUS:84863116267

VL - 108

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 6

M1 - 067402

ER -