Preparation of silica hybrid membranes for high temperature gas separation

Mikihiro Nomura, Keita Momma, Yoshio Negishi, Emi Matsuyama, Sayuka Kimura

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

A molecular sieve silica hybrid membrane was successfully prepared by using a counter diffusion chemical vapor deposition (CVD) method. Propyltrimethoxysilane (PrTMOS) was employed for a silica precursor. O3 was used as an oxidizer. Effects of deposition temperatures on permeation properties through the silica membranes were investigated. H2 (0.29 nm), N2 (0.36 nm) and SF6 (0.55 nm) permeances were measured at the deposited temperatures through the membranes. H2/N2 permeances ratios decreased sharply with increasing the deposition temperatures from 200 C to 400 C. In addition, H2 permeance through the membrane deposited at 400 C was very high (4.6 10 7 mol m 2 s 1 Pa 1) with a low H2/N2 permeances ratio (3.4). This shows that silica was not deposited at 400°C due to O3 decomposition at the high temperature deposition. On the other hand, N2/SF6 permeances ratios increased with increasing the deposition temperatures upto 320°C. The maximum value of N2/SF6 permeances ratio was 110 at 320°C deposition. This is much larger than that of Knudsen diffusion separation (2.3). According to the kinetic diameters of N2 and SF6, the pore sizes of the membrane were estimated at about 0.5 nm. These results show that the pore size of silica membranes can be controlled by changing the deposition temperatures. The decomposition reactions of propyl groups on silica hybrid materials were also investigated by TG and IR measurements. Propyl groups on silica hybrid materials decomposed at around 300°C and 400°C. Decomposition at around 300°C was C2H4 removal from the surface to remain methyl groups on the surface. Thus, we conclude that the high selective membrane deposited at 320°C was a silica hybrid membrane having methyl groups in the silica deposition.

Original languageEnglish
Pages (from-to)288-293
Number of pages6
JournalDesalination and Water Treatment
Volume17
Issue number1-3
DOIs
Publication statusPublished - 2010

Fingerprint

silica
Silica
membrane
Membranes
Gases
gas
Temperature
Hybrid materials
decomposition
Decomposition
temperature
Pore size
Molecular sieves
Permeation
Chemical vapor deposition
kinetics
Kinetics

Keywords

  • Counter diffusion CVD
  • Pore size control
  • Silica hybrid membrane

ASJC Scopus subject areas

  • Pollution
  • Water Science and Technology
  • Ocean Engineering

Cite this

Preparation of silica hybrid membranes for high temperature gas separation. / Nomura, Mikihiro; Momma, Keita; Negishi, Yoshio; Matsuyama, Emi; Kimura, Sayuka.

In: Desalination and Water Treatment, Vol. 17, No. 1-3, 2010, p. 288-293.

Research output: Contribution to journalArticle

Nomura, Mikihiro ; Momma, Keita ; Negishi, Yoshio ; Matsuyama, Emi ; Kimura, Sayuka. / Preparation of silica hybrid membranes for high temperature gas separation. In: Desalination and Water Treatment. 2010 ; Vol. 17, No. 1-3. pp. 288-293.
@article{693d7bc4f5824137b355f0817343ef3c,
title = "Preparation of silica hybrid membranes for high temperature gas separation",
abstract = "A molecular sieve silica hybrid membrane was successfully prepared by using a counter diffusion chemical vapor deposition (CVD) method. Propyltrimethoxysilane (PrTMOS) was employed for a silica precursor. O3 was used as an oxidizer. Effects of deposition temperatures on permeation properties through the silica membranes were investigated. H2 (0.29 nm), N2 (0.36 nm) and SF6 (0.55 nm) permeances were measured at the deposited temperatures through the membranes. H2/N2 permeances ratios decreased sharply with increasing the deposition temperatures from 200 C to 400 C. In addition, H2 permeance through the membrane deposited at 400 C was very high (4.6 10 7 mol m 2 s 1 Pa 1) with a low H2/N2 permeances ratio (3.4). This shows that silica was not deposited at 400°C due to O3 decomposition at the high temperature deposition. On the other hand, N2/SF6 permeances ratios increased with increasing the deposition temperatures upto 320°C. The maximum value of N2/SF6 permeances ratio was 110 at 320°C deposition. This is much larger than that of Knudsen diffusion separation (2.3). According to the kinetic diameters of N2 and SF6, the pore sizes of the membrane were estimated at about 0.5 nm. These results show that the pore size of silica membranes can be controlled by changing the deposition temperatures. The decomposition reactions of propyl groups on silica hybrid materials were also investigated by TG and IR measurements. Propyl groups on silica hybrid materials decomposed at around 300°C and 400°C. Decomposition at around 300°C was C2H4 removal from the surface to remain methyl groups on the surface. Thus, we conclude that the high selective membrane deposited at 320°C was a silica hybrid membrane having methyl groups in the silica deposition.",
keywords = "Counter diffusion CVD, Pore size control, Silica hybrid membrane",
author = "Mikihiro Nomura and Keita Momma and Yoshio Negishi and Emi Matsuyama and Sayuka Kimura",
year = "2010",
doi = "10.5004/dwt.2010.1731",
language = "English",
volume = "17",
pages = "288--293",
journal = "Desalination and Water Treatment",
issn = "1944-3994",
publisher = "Taylor and Francis Ltd.",
number = "1-3",

}

TY - JOUR

T1 - Preparation of silica hybrid membranes for high temperature gas separation

AU - Nomura, Mikihiro

AU - Momma, Keita

AU - Negishi, Yoshio

AU - Matsuyama, Emi

AU - Kimura, Sayuka

PY - 2010

Y1 - 2010

N2 - A molecular sieve silica hybrid membrane was successfully prepared by using a counter diffusion chemical vapor deposition (CVD) method. Propyltrimethoxysilane (PrTMOS) was employed for a silica precursor. O3 was used as an oxidizer. Effects of deposition temperatures on permeation properties through the silica membranes were investigated. H2 (0.29 nm), N2 (0.36 nm) and SF6 (0.55 nm) permeances were measured at the deposited temperatures through the membranes. H2/N2 permeances ratios decreased sharply with increasing the deposition temperatures from 200 C to 400 C. In addition, H2 permeance through the membrane deposited at 400 C was very high (4.6 10 7 mol m 2 s 1 Pa 1) with a low H2/N2 permeances ratio (3.4). This shows that silica was not deposited at 400°C due to O3 decomposition at the high temperature deposition. On the other hand, N2/SF6 permeances ratios increased with increasing the deposition temperatures upto 320°C. The maximum value of N2/SF6 permeances ratio was 110 at 320°C deposition. This is much larger than that of Knudsen diffusion separation (2.3). According to the kinetic diameters of N2 and SF6, the pore sizes of the membrane were estimated at about 0.5 nm. These results show that the pore size of silica membranes can be controlled by changing the deposition temperatures. The decomposition reactions of propyl groups on silica hybrid materials were also investigated by TG and IR measurements. Propyl groups on silica hybrid materials decomposed at around 300°C and 400°C. Decomposition at around 300°C was C2H4 removal from the surface to remain methyl groups on the surface. Thus, we conclude that the high selective membrane deposited at 320°C was a silica hybrid membrane having methyl groups in the silica deposition.

AB - A molecular sieve silica hybrid membrane was successfully prepared by using a counter diffusion chemical vapor deposition (CVD) method. Propyltrimethoxysilane (PrTMOS) was employed for a silica precursor. O3 was used as an oxidizer. Effects of deposition temperatures on permeation properties through the silica membranes were investigated. H2 (0.29 nm), N2 (0.36 nm) and SF6 (0.55 nm) permeances were measured at the deposited temperatures through the membranes. H2/N2 permeances ratios decreased sharply with increasing the deposition temperatures from 200 C to 400 C. In addition, H2 permeance through the membrane deposited at 400 C was very high (4.6 10 7 mol m 2 s 1 Pa 1) with a low H2/N2 permeances ratio (3.4). This shows that silica was not deposited at 400°C due to O3 decomposition at the high temperature deposition. On the other hand, N2/SF6 permeances ratios increased with increasing the deposition temperatures upto 320°C. The maximum value of N2/SF6 permeances ratio was 110 at 320°C deposition. This is much larger than that of Knudsen diffusion separation (2.3). According to the kinetic diameters of N2 and SF6, the pore sizes of the membrane were estimated at about 0.5 nm. These results show that the pore size of silica membranes can be controlled by changing the deposition temperatures. The decomposition reactions of propyl groups on silica hybrid materials were also investigated by TG and IR measurements. Propyl groups on silica hybrid materials decomposed at around 300°C and 400°C. Decomposition at around 300°C was C2H4 removal from the surface to remain methyl groups on the surface. Thus, we conclude that the high selective membrane deposited at 320°C was a silica hybrid membrane having methyl groups in the silica deposition.

KW - Counter diffusion CVD

KW - Pore size control

KW - Silica hybrid membrane

UR - http://www.scopus.com/inward/record.url?scp=77954301970&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954301970&partnerID=8YFLogxK

U2 - 10.5004/dwt.2010.1731

DO - 10.5004/dwt.2010.1731

M3 - Article

AN - SCOPUS:77954301970

VL - 17

SP - 288

EP - 293

JO - Desalination and Water Treatment

JF - Desalination and Water Treatment

SN - 1944-3994

IS - 1-3

ER -