Protein patterning on functionalized surface prepared by selective plasma polymerization

Hitoshi Muguruma, Hayato Takahashi

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Techniques for patterned modification of substrate surfaces are important for the formation of microarrays on protein chips. One strategy is based on partial plasma polymerization to create protein adhesive/non-adhesive regions of several tens of micrometers in size. Protein immobilization on a plasma functionalized surface occurs by physical adsorption of a protein solution. Distinct 80×80μm2 square spots of fluorescently labeled protein, immunoglobulin G, surrounded by a non-fluorescent 80μm wide grid were observed. The monomer tetraethylene glycol diethyl ether was the best candidate for plasma polymerization to produce a protein-repellent surface. However, the choice of monomer for the protein adhesive surface was strongly dependent on the type of protein. Binding assays were performed by protein immobilization on the patterned substrate and subsequent reaction with fluorescently labeled counterpart proteins (secondary antibodies). Fluorescent patterning similar to the original pattern was observed. In contrast, patterning was not observed when a fluorescently labeled non-counterpart protein was reacted with the surface. This indicated that the proteins were selectively adsorbed onto the target patterned surface and retained their biofunctional activity in addition to having a suitable orientation of the molecule. Moreover, the protein non-adhesive layer plays a role for suppression of the background signal and enhancement of the signal to noise (S/N) ratio. The proposed technique provides a simple and robust method for protein patterning.

Original languageEnglish
Pages (from-to)2490-2494
Number of pages5
JournalSurface and Coatings Technology
Volume205
Issue number7
DOIs
Publication statusPublished - 2010 Dec 25

Keywords

  • Adsorption
  • Antibody
  • Plasma-polymerized film
  • Protein patterning

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Protein patterning on functionalized surface prepared by selective plasma polymerization'. Together they form a unique fingerprint.

Cite this