Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro

Elena Deligianni, Sally Pattison, Daniel Berrar, Nigel G. Ternan, Richard W. Haylock, John E. Moore, Stuart J. Elborn, James S G Dooley

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

Background. Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results. Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions. Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung.

Original languageEnglish
Article number38
JournalBMC Microbiology
Volume10
DOIs
Publication statusPublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology (medical)
  • Microbiology

Cite this

Deligianni, E., Pattison, S., Berrar, D., Ternan, N. G., Haylock, R. W., Moore, J. E., ... Dooley, J. S. G. (2010). Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiology, 10, [38]. https://doi.org/10.1186/1471-2180-10-38

Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. / Deligianni, Elena; Pattison, Sally; Berrar, Daniel; Ternan, Nigel G.; Haylock, Richard W.; Moore, John E.; Elborn, Stuart J.; Dooley, James S G.

In: BMC Microbiology, Vol. 10, 38, 2010.

Research output: Contribution to journalArticle

Deligianni, E, Pattison, S, Berrar, D, Ternan, NG, Haylock, RW, Moore, JE, Elborn, SJ & Dooley, JSG 2010, 'Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro', BMC Microbiology, vol. 10, 38. https://doi.org/10.1186/1471-2180-10-38
Deligianni, Elena ; Pattison, Sally ; Berrar, Daniel ; Ternan, Nigel G. ; Haylock, Richard W. ; Moore, John E. ; Elborn, Stuart J. ; Dooley, James S G. / Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. In: BMC Microbiology. 2010 ; Vol. 10.
@article{32ddb4ec266144b0b6d79c86c6951bad,
title = "Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro",
abstract = "Background. Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results. Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49{\%} possessed swimming motility, 27{\%} twitching and 52{\%} swarming motility, while 47{\%} were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions. Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows {"}non biofilm-forming{"} isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung.",
author = "Elena Deligianni and Sally Pattison and Daniel Berrar and Ternan, {Nigel G.} and Haylock, {Richard W.} and Moore, {John E.} and Elborn, {Stuart J.} and Dooley, {James S G}",
year = "2010",
doi = "10.1186/1471-2180-10-38",
language = "English",
volume = "10",
journal = "BMC Microbiology",
issn = "1471-2180",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro

AU - Deligianni, Elena

AU - Pattison, Sally

AU - Berrar, Daniel

AU - Ternan, Nigel G.

AU - Haylock, Richard W.

AU - Moore, John E.

AU - Elborn, Stuart J.

AU - Dooley, James S G

PY - 2010

Y1 - 2010

N2 - Background. Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results. Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions. Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung.

AB - Background. Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results. Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions. Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung.

UR - http://www.scopus.com/inward/record.url?scp=77949675436&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949675436&partnerID=8YFLogxK

U2 - 10.1186/1471-2180-10-38

DO - 10.1186/1471-2180-10-38

M3 - Article

VL - 10

JO - BMC Microbiology

JF - BMC Microbiology

SN - 1471-2180

M1 - 38

ER -