TY - JOUR
T1 - Quantifying covalency and metallicity in correlated compounds undergoing metal-insulator transitions
AU - Chainani, Ashish
AU - Yamamoto, Ayako
AU - Matsunami, Masaharu
AU - Eguchi, Ritsuko
AU - Taguchi, Munetaka
AU - Takata, Yasutaka
AU - Takagi, Hidenori
AU - Shin, Shik
AU - Nishino, Yoshinori
AU - Yabashi, Makina
AU - Tamasaku, Kenji
AU - Ishikawa, Tetsuya
PY - 2013/1/9
Y1 - 2013/1/9
N2 - The tunability of bonding character in transition-metal compounds controls phase transitions and their fascinating properties such as high-temperature superconductivity, colossal magnetoresistance, spin-charge ordering, etc. However, separating out and quantifying the roles of covalency and metallicity derived from the same set of transition-metal d and ligand p electrons remains a fundamental challenge. In this study, we use bulk-sensitive photoelectron spectroscopy and configuration-interaction calculations for quantifying the covalency and metallicity in correlated compounds. The method is applied to study the first-order temperature- (T-) dependent metal-insulator transitions (MITs) in the cubic pyrochlore ruthenates Tl2Ru2O 7 and Hg2Ru2O7. Core-level spectroscopy shows drastic T-dependent modifications which are well explained by including ligand-screening and metallic-screening channels. The core-level metallic-origin features get quenched upon gap formation in valence band spectra, while ionic and covalent components remain intact across the MIT. The results establish temperature-driven Mott-Hubbard MITs in three-dimensional ruthenates and reveal three energy scales: (a) 4d electronic changes occur on the largest (∼eV) energy scale, (b) the band-gap energies/charge gaps (Eg∼160-200 meV) are intermediate, and (c) the lowest-energy scale corresponds to the transition temperature TMIT (∼10 meV), which is also the spin gap energy of Tl2Ru2O7 and the magnetic-ordering temperature of Hg2Ru2O 7. The method is general for doping- and T-induced transitions and is valid for V2O3, CrN, La1-xSr xMnO3, La2-xSrxCuO4, etc. The obtained transition-metal-ligand (d-p) bonding energies (V∼45-90 kcal/mol) are consistent with thermochemical data, and with energies of typical heteronuclear covalent bonds such as C-H, C-O, C-N, etc. In contrast, the metallic-screening energies of correlated compounds form a weaker class (V *∼10-40 kcal/mol) but are still stronger than van der Waals and hydrogen bonding. The results identify and quantify the roles of covalency and metallicity in 3d and 4d correlated compounds undergoing metal-insulator transitions.
AB - The tunability of bonding character in transition-metal compounds controls phase transitions and their fascinating properties such as high-temperature superconductivity, colossal magnetoresistance, spin-charge ordering, etc. However, separating out and quantifying the roles of covalency and metallicity derived from the same set of transition-metal d and ligand p electrons remains a fundamental challenge. In this study, we use bulk-sensitive photoelectron spectroscopy and configuration-interaction calculations for quantifying the covalency and metallicity in correlated compounds. The method is applied to study the first-order temperature- (T-) dependent metal-insulator transitions (MITs) in the cubic pyrochlore ruthenates Tl2Ru2O 7 and Hg2Ru2O7. Core-level spectroscopy shows drastic T-dependent modifications which are well explained by including ligand-screening and metallic-screening channels. The core-level metallic-origin features get quenched upon gap formation in valence band spectra, while ionic and covalent components remain intact across the MIT. The results establish temperature-driven Mott-Hubbard MITs in three-dimensional ruthenates and reveal three energy scales: (a) 4d electronic changes occur on the largest (∼eV) energy scale, (b) the band-gap energies/charge gaps (Eg∼160-200 meV) are intermediate, and (c) the lowest-energy scale corresponds to the transition temperature TMIT (∼10 meV), which is also the spin gap energy of Tl2Ru2O7 and the magnetic-ordering temperature of Hg2Ru2O 7. The method is general for doping- and T-induced transitions and is valid for V2O3, CrN, La1-xSr xMnO3, La2-xSrxCuO4, etc. The obtained transition-metal-ligand (d-p) bonding energies (V∼45-90 kcal/mol) are consistent with thermochemical data, and with energies of typical heteronuclear covalent bonds such as C-H, C-O, C-N, etc. In contrast, the metallic-screening energies of correlated compounds form a weaker class (V *∼10-40 kcal/mol) but are still stronger than van der Waals and hydrogen bonding. The results identify and quantify the roles of covalency and metallicity in 3d and 4d correlated compounds undergoing metal-insulator transitions.
UR - http://www.scopus.com/inward/record.url?scp=84872919356&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872919356&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.87.045108
DO - 10.1103/PhysRevB.87.045108
M3 - Article
AN - SCOPUS:84872919356
SN - 0163-1829
VL - 87
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
IS - 4
M1 - 045108
ER -