Real-time observation of Ca2+-induced basal body reorientation in Chlamydomonas

Masahito Hayashi, Toshiki Yagi, Kenjiro Yoshimura, Ritsu Kamiya

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The two basal bodies of Chlamydomonas are connected by a bridge, the distal fiber, that contains a Ca2+-binding protein, centrin. Although various fibrous structures in many organisms containing centrin or similar proteins have been shown to contract at Ca2+ concentrations > 10-7-10- 6 M, the contractility of the distal fiber in Chlamydomonas has not been demonstrated. To determine whether it undergoes Ca2+-dependent contraction, we isolated the flagella-basal body complex from the paralyzed-flagella mutant pf18 and measured the angle between the two axonemes at different Ca2+ concentrations. Use of a double mutant with the mutant faI, deficient in the mechanism for Ca2+-dependent flagellar amputation, enabled the measurement at Ca2+ concentrations ≤ 10-4 M. The angle, 80-120°at 10- 9 M Ca2+, was found to decrease by about 20°when the Ca2+ concentration was raised above 10-6 M. The angle increased again when the Ca2+ concentration was lowered below 10-7 M. The flagellar apparatuses isolated from the double mutant between pfl8 and the mutant vfl2 deficient in the structural gene of centrin had an angle of 90-130°at 10-9 M Ca2+, but the angle did not change when the Ca2+ concentration was increased. Thus centrin must be involved in the basal body reorientation. In detergent- extracted cell models of the pfl8fal mutant, the angle between the two axonemes was found to decrease transiently by about 15°upon iontophoretic application of Ca2+. Hence, the Ca2+-induced basal body reorientation can take place even when the basal body is contained in the cell body covered by the cell wall. It may function as part of the mechanism for phobic responses wherein Chlamydomonas cells swim backward transiently upon reception of strong light or mechanical stimuli.

Original languageEnglish
Pages (from-to)49-56
Number of pages8
JournalCell Motility and the Cytoskeleton
Volume41
Issue number1
DOIs
Publication statusPublished - 1998
Externally publishedYes

Keywords

  • Ca
  • Caltractin
  • Centrin
  • Flagella
  • Iontophoresis
  • Phobic response

ASJC Scopus subject areas

  • Cell Biology

Cite this

Real-time observation of Ca2+-induced basal body reorientation in Chlamydomonas. / Hayashi, Masahito; Yagi, Toshiki; Yoshimura, Kenjiro; Kamiya, Ritsu.

In: Cell Motility and the Cytoskeleton, Vol. 41, No. 1, 1998, p. 49-56.

Research output: Contribution to journalArticle

Hayashi, Masahito ; Yagi, Toshiki ; Yoshimura, Kenjiro ; Kamiya, Ritsu. / Real-time observation of Ca2+-induced basal body reorientation in Chlamydomonas. In: Cell Motility and the Cytoskeleton. 1998 ; Vol. 41, No. 1. pp. 49-56.
@article{b6a4a4c053a748138d44a74fceabb3e7,
title = "Real-time observation of Ca2+-induced basal body reorientation in Chlamydomonas",
abstract = "The two basal bodies of Chlamydomonas are connected by a bridge, the distal fiber, that contains a Ca2+-binding protein, centrin. Although various fibrous structures in many organisms containing centrin or similar proteins have been shown to contract at Ca2+ concentrations > 10-7-10- 6 M, the contractility of the distal fiber in Chlamydomonas has not been demonstrated. To determine whether it undergoes Ca2+-dependent contraction, we isolated the flagella-basal body complex from the paralyzed-flagella mutant pf18 and measured the angle between the two axonemes at different Ca2+ concentrations. Use of a double mutant with the mutant faI, deficient in the mechanism for Ca2+-dependent flagellar amputation, enabled the measurement at Ca2+ concentrations ≤ 10-4 M. The angle, 80-120°at 10- 9 M Ca2+, was found to decrease by about 20°when the Ca2+ concentration was raised above 10-6 M. The angle increased again when the Ca2+ concentration was lowered below 10-7 M. The flagellar apparatuses isolated from the double mutant between pfl8 and the mutant vfl2 deficient in the structural gene of centrin had an angle of 90-130°at 10-9 M Ca2+, but the angle did not change when the Ca2+ concentration was increased. Thus centrin must be involved in the basal body reorientation. In detergent- extracted cell models of the pfl8fal mutant, the angle between the two axonemes was found to decrease transiently by about 15°upon iontophoretic application of Ca2+. Hence, the Ca2+-induced basal body reorientation can take place even when the basal body is contained in the cell body covered by the cell wall. It may function as part of the mechanism for phobic responses wherein Chlamydomonas cells swim backward transiently upon reception of strong light or mechanical stimuli.",
keywords = "Ca, Caltractin, Centrin, Flagella, Iontophoresis, Phobic response",
author = "Masahito Hayashi and Toshiki Yagi and Kenjiro Yoshimura and Ritsu Kamiya",
year = "1998",
doi = "10.1002/(SICI)1097-0169(1998)41:1<49::AID-CM4>3.0.CO;2-A",
language = "English",
volume = "41",
pages = "49--56",
journal = "Cytoskeleton",
issn = "1949-3584",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Real-time observation of Ca2+-induced basal body reorientation in Chlamydomonas

AU - Hayashi, Masahito

AU - Yagi, Toshiki

AU - Yoshimura, Kenjiro

AU - Kamiya, Ritsu

PY - 1998

Y1 - 1998

N2 - The two basal bodies of Chlamydomonas are connected by a bridge, the distal fiber, that contains a Ca2+-binding protein, centrin. Although various fibrous structures in many organisms containing centrin or similar proteins have been shown to contract at Ca2+ concentrations > 10-7-10- 6 M, the contractility of the distal fiber in Chlamydomonas has not been demonstrated. To determine whether it undergoes Ca2+-dependent contraction, we isolated the flagella-basal body complex from the paralyzed-flagella mutant pf18 and measured the angle between the two axonemes at different Ca2+ concentrations. Use of a double mutant with the mutant faI, deficient in the mechanism for Ca2+-dependent flagellar amputation, enabled the measurement at Ca2+ concentrations ≤ 10-4 M. The angle, 80-120°at 10- 9 M Ca2+, was found to decrease by about 20°when the Ca2+ concentration was raised above 10-6 M. The angle increased again when the Ca2+ concentration was lowered below 10-7 M. The flagellar apparatuses isolated from the double mutant between pfl8 and the mutant vfl2 deficient in the structural gene of centrin had an angle of 90-130°at 10-9 M Ca2+, but the angle did not change when the Ca2+ concentration was increased. Thus centrin must be involved in the basal body reorientation. In detergent- extracted cell models of the pfl8fal mutant, the angle between the two axonemes was found to decrease transiently by about 15°upon iontophoretic application of Ca2+. Hence, the Ca2+-induced basal body reorientation can take place even when the basal body is contained in the cell body covered by the cell wall. It may function as part of the mechanism for phobic responses wherein Chlamydomonas cells swim backward transiently upon reception of strong light or mechanical stimuli.

AB - The two basal bodies of Chlamydomonas are connected by a bridge, the distal fiber, that contains a Ca2+-binding protein, centrin. Although various fibrous structures in many organisms containing centrin or similar proteins have been shown to contract at Ca2+ concentrations > 10-7-10- 6 M, the contractility of the distal fiber in Chlamydomonas has not been demonstrated. To determine whether it undergoes Ca2+-dependent contraction, we isolated the flagella-basal body complex from the paralyzed-flagella mutant pf18 and measured the angle between the two axonemes at different Ca2+ concentrations. Use of a double mutant with the mutant faI, deficient in the mechanism for Ca2+-dependent flagellar amputation, enabled the measurement at Ca2+ concentrations ≤ 10-4 M. The angle, 80-120°at 10- 9 M Ca2+, was found to decrease by about 20°when the Ca2+ concentration was raised above 10-6 M. The angle increased again when the Ca2+ concentration was lowered below 10-7 M. The flagellar apparatuses isolated from the double mutant between pfl8 and the mutant vfl2 deficient in the structural gene of centrin had an angle of 90-130°at 10-9 M Ca2+, but the angle did not change when the Ca2+ concentration was increased. Thus centrin must be involved in the basal body reorientation. In detergent- extracted cell models of the pfl8fal mutant, the angle between the two axonemes was found to decrease transiently by about 15°upon iontophoretic application of Ca2+. Hence, the Ca2+-induced basal body reorientation can take place even when the basal body is contained in the cell body covered by the cell wall. It may function as part of the mechanism for phobic responses wherein Chlamydomonas cells swim backward transiently upon reception of strong light or mechanical stimuli.

KW - Ca

KW - Caltractin

KW - Centrin

KW - Flagella

KW - Iontophoresis

KW - Phobic response

UR - http://www.scopus.com/inward/record.url?scp=0031687478&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031687478&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1097-0169(1998)41:1<49::AID-CM4>3.0.CO;2-A

DO - 10.1002/(SICI)1097-0169(1998)41:1<49::AID-CM4>3.0.CO;2-A

M3 - Article

C2 - 9744298

AN - SCOPUS:0031687478

VL - 41

SP - 49

EP - 56

JO - Cytoskeleton

JF - Cytoskeleton

SN - 1949-3584

IS - 1

ER -