Research and development on membrane IS process for hydrogen production using solar heat

Odtsetseg Myagmarjav, Jin Iwatsuki, Nobuyuki Tanaka, Hiroki Noguchi, Yu Kamiji, Ikuo Ioka, Shinji Kubo, Mikihiro Nomura, Tetsuya Yamaki, Shinichi Sawada, Toshinori Tsuru, Masakoto Kanezashi, Xin Yu, Masato Machida, Tatsumi Ishihara, Hiroaki Abekawa, Masahiko Mizuno, Tomoyuki Taguchi, Yasuo Hosono, Yoshiro KurikiMakoto Inomata, Keita Miyajima, Yoshiyuki Inagaki, Nariaki Sakaba

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Thermochemical hydrogen production has attracted considerable interest as a clean energy solution to address the challenges of climate change and environmental sustainability. The thermochemical water-splitting iodine-sulfur (IS) process uses heat from nuclear or solar power and thus is a promising next-generation thermochemical hydrogen production method that is independent of fossil fuels and can provide energy security. This paper presents the current state of research and development (R&D) of the IS process based on membrane techniques using solar energy at a medium temperature of 600 °C. Membrane design strategies have the most potential for making the IS process using solar energy highly efficient and economical and are illustrated here in detail. Three aspects of membrane design proposed herein for the IS process have led to a considerable improvement of the total thermal efficiency of the process: membrane reactors, membranes, and reaction catalysts. Experimental studies in the applications of these membrane design techniques to the Bunsen reaction, sulfuric acid decomposition, and hydrogen iodide decomposition are discussed.

Original languageEnglish
JournalInternational Journal of Hydrogen Energy
DOIs
Publication statusAccepted/In press - 2018 Jan 1

    Fingerprint

Keywords

  • IS process
  • Membrane
  • Membrane reactor
  • Membrane technique
  • Reaction catalyst
  • Thermochemical hydrogen production

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Cite this

Myagmarjav, O., Iwatsuki, J., Tanaka, N., Noguchi, H., Kamiji, Y., Ioka, I., Kubo, S., Nomura, M., Yamaki, T., Sawada, S., Tsuru, T., Kanezashi, M., Yu, X., Machida, M., Ishihara, T., Abekawa, H., Mizuno, M., Taguchi, T., Hosono, Y., ... Sakaba, N. (Accepted/In press). Research and development on membrane IS process for hydrogen production using solar heat. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.03.132