Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials for cathode in Li–O2 battery

Chayanaphat Chokradjaroen, Hiroko Watanabe, Takahiro Ishii, Takahiro Ishizaki

Research output: Contribution to journalArticlepeer-review

Abstract

Cathode materials are essential for enhancing electrocatalytic activity in energy-conversion devices. Carbon is one of the most suitable cathodic materials for Li–O2 batteries owing to its chemical and thermal stability. Carbon materials synthesized from tributyl borate (TBB) using a nonthermal solution plasma method were characterized using x‐ray diffraction, Raman, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, and x-ray photoelectron spectroscopy and were evaluated as additive materials for cathodes in a Li–O2 battery. Two separate carbon materials were formed at the same time, a carbon dispersed in solution and a carbon precipitate at the bottom of the reactor, which had amorphous and graphite-like structures, respectively. The amorphous carbon contained boron and tungsten carbide, and the graphite-like carbon had more defects and electronic conductivity. The crystallinity and density of defects in the graphite-like carbon could be tuned by changing the SP operating frequency. The Li–O2 battery with the amorphous carbon containing boron and tungsten carbide was found to have a high capacity, while the one with the graphite-like carbon showed an affinity for the formation of Li2O2, which is the desired discharge product, and exhibited high cycling performance.

Original languageEnglish
Article number6261
JournalScientific Reports
Volume11
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials for cathode in Li–O<sub>2</sub> battery'. Together they form a unique fingerprint.

Cite this