Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin

Asao Nakamura, Yoshihisa Inoue

Research output: Contribution to journalArticle

172 Citations (Scopus)

Abstract

2-Anthracenecarboxylic acid (AC) makes a very stable 1:2 inclusion complex with γ-cyclodextrin (γ-CDx) (K1 = 161 ± 25 M-1, K2 = 38 500 ± 3300 M-1 at 25 °C). The formation of the 1:2 inclusion complex accelerated the photocyclodimerization of AC. The 1:2 inclusion could be clearly verified by UV-vis, CD, and 1H NMR spectroscopies. Although these spectroscopies provide little information about the structural isomers of the inclusion complex, there should be several structural isomers of the 1:2 inclusion complex which have a different longitudinal orientation of the guest molecules in the cavity. The isomer distribution of the photodimerization product primarily depends on the population of these orientational isomers of the 1:2 inclusion complex in the ground state before photoreaction, because, in the lifetime of the excited singlet state, exchanging the orientation is impossible. The enantioselectivity of the photodimerization originates from the difference in the stability of the diastereomeric pair of orientational isomers of the 1:2 inclusion complex in the ground state, which are the precursors of the enantiomers of a specific chiral cyclodimer. The ee of a chiral cyclodimer 2 was 32% at 25 °C and was enhanced by lowering the temperature to 41% at 0 °C. This is the highest value reported for the asymmetric photodimerization in solution.

Original languageEnglish
Pages (from-to)966-972
Number of pages7
JournalJournal of the American Chemical Society
Volume125
Issue number4
DOIs
Publication statusPublished - 2003 Jan 29

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin'. Together they form a unique fingerprint.

  • Cite this