Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin

Asao Nakamura, Yoshihisa Inoue

Research output: Contribution to journalArticle

164 Citations (Scopus)

Abstract

2-Anthracenecarboxylic acid (AC) makes a very stable 1:2 inclusion complex with γ-cyclodextrin (γ-CDx) (K1 = 161 ± 25 M-1, K2 = 38 500 ± 3300 M-1 at 25 °C). The formation of the 1:2 inclusion complex accelerated the photocyclodimerization of AC. The 1:2 inclusion could be clearly verified by UV-vis, CD, and 1H NMR spectroscopies. Although these spectroscopies provide little information about the structural isomers of the inclusion complex, there should be several structural isomers of the 1:2 inclusion complex which have a different longitudinal orientation of the guest molecules in the cavity. The isomer distribution of the photodimerization product primarily depends on the population of these orientational isomers of the 1:2 inclusion complex in the ground state before photoreaction, because, in the lifetime of the excited singlet state, exchanging the orientation is impossible. The enantioselectivity of the photodimerization originates from the difference in the stability of the diastereomeric pair of orientational isomers of the 1:2 inclusion complex in the ground state, which are the precursors of the enantiomers of a specific chiral cyclodimer. The ee of a chiral cyclodimer 2 was 32% at 25 °C and was enhanced by lowering the temperature to 41% at 0 °C. This is the highest value reported for the asymmetric photodimerization in solution.

Original languageEnglish
Pages (from-to)966-972
Number of pages7
JournalJournal of the American Chemical Society
Volume125
Issue number4
DOIs
Publication statusPublished - 2003 Jan 29
Externally publishedYes

Fingerprint

Cyclodextrins
Catalysis
Isomers
Ground state
Acids
Enantiomers
Enantioselectivity
2-anthracenecarboxylate
Excited states
Crystal orientation
Nuclear magnetic resonance spectroscopy
Spectroscopy
Molecules

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{e9e2774707214ca280291dfa09dc860e,
title = "Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin",
abstract = "2-Anthracenecarboxylic acid (AC) makes a very stable 1:2 inclusion complex with γ-cyclodextrin (γ-CDx) (K1 = 161 ± 25 M-1, K2 = 38 500 ± 3300 M-1 at 25 °C). The formation of the 1:2 inclusion complex accelerated the photocyclodimerization of AC. The 1:2 inclusion could be clearly verified by UV-vis, CD, and 1H NMR spectroscopies. Although these spectroscopies provide little information about the structural isomers of the inclusion complex, there should be several structural isomers of the 1:2 inclusion complex which have a different longitudinal orientation of the guest molecules in the cavity. The isomer distribution of the photodimerization product primarily depends on the population of these orientational isomers of the 1:2 inclusion complex in the ground state before photoreaction, because, in the lifetime of the excited singlet state, exchanging the orientation is impossible. The enantioselectivity of the photodimerization originates from the difference in the stability of the diastereomeric pair of orientational isomers of the 1:2 inclusion complex in the ground state, which are the precursors of the enantiomers of a specific chiral cyclodimer. The ee of a chiral cyclodimer 2 was 32{\%} at 25 °C and was enhanced by lowering the temperature to 41{\%} at 0 °C. This is the highest value reported for the asymmetric photodimerization in solution.",
author = "Asao Nakamura and Yoshihisa Inoue",
year = "2003",
month = "1",
day = "29",
doi = "10.1021/ja016238k",
language = "English",
volume = "125",
pages = "966--972",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin

AU - Nakamura, Asao

AU - Inoue, Yoshihisa

PY - 2003/1/29

Y1 - 2003/1/29

N2 - 2-Anthracenecarboxylic acid (AC) makes a very stable 1:2 inclusion complex with γ-cyclodextrin (γ-CDx) (K1 = 161 ± 25 M-1, K2 = 38 500 ± 3300 M-1 at 25 °C). The formation of the 1:2 inclusion complex accelerated the photocyclodimerization of AC. The 1:2 inclusion could be clearly verified by UV-vis, CD, and 1H NMR spectroscopies. Although these spectroscopies provide little information about the structural isomers of the inclusion complex, there should be several structural isomers of the 1:2 inclusion complex which have a different longitudinal orientation of the guest molecules in the cavity. The isomer distribution of the photodimerization product primarily depends on the population of these orientational isomers of the 1:2 inclusion complex in the ground state before photoreaction, because, in the lifetime of the excited singlet state, exchanging the orientation is impossible. The enantioselectivity of the photodimerization originates from the difference in the stability of the diastereomeric pair of orientational isomers of the 1:2 inclusion complex in the ground state, which are the precursors of the enantiomers of a specific chiral cyclodimer. The ee of a chiral cyclodimer 2 was 32% at 25 °C and was enhanced by lowering the temperature to 41% at 0 °C. This is the highest value reported for the asymmetric photodimerization in solution.

AB - 2-Anthracenecarboxylic acid (AC) makes a very stable 1:2 inclusion complex with γ-cyclodextrin (γ-CDx) (K1 = 161 ± 25 M-1, K2 = 38 500 ± 3300 M-1 at 25 °C). The formation of the 1:2 inclusion complex accelerated the photocyclodimerization of AC. The 1:2 inclusion could be clearly verified by UV-vis, CD, and 1H NMR spectroscopies. Although these spectroscopies provide little information about the structural isomers of the inclusion complex, there should be several structural isomers of the 1:2 inclusion complex which have a different longitudinal orientation of the guest molecules in the cavity. The isomer distribution of the photodimerization product primarily depends on the population of these orientational isomers of the 1:2 inclusion complex in the ground state before photoreaction, because, in the lifetime of the excited singlet state, exchanging the orientation is impossible. The enantioselectivity of the photodimerization originates from the difference in the stability of the diastereomeric pair of orientational isomers of the 1:2 inclusion complex in the ground state, which are the precursors of the enantiomers of a specific chiral cyclodimer. The ee of a chiral cyclodimer 2 was 32% at 25 °C and was enhanced by lowering the temperature to 41% at 0 °C. This is the highest value reported for the asymmetric photodimerization in solution.

UR - http://www.scopus.com/inward/record.url?scp=0037471664&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037471664&partnerID=8YFLogxK

U2 - 10.1021/ja016238k

DO - 10.1021/ja016238k

M3 - Article

VL - 125

SP - 966

EP - 972

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 4

ER -