The Bochner-Schwartz theorem for Fourier ultra-hyperfunctions

Kunio Yoshino, Masanori Suwa

Research output: Contribution to journalArticle

Abstract

Positive definite generalized functions are analyzed through examples.

Original languageEnglish
Pages (from-to)109-114
Number of pages6
JournalIntegral Transforms and Special Functions
Volume17
Issue number2-3
DOIs
Publication statusPublished - 2006 Feb
Externally publishedYes

Keywords

  • Positive definite generalized functions

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics
  • Analysis

Cite this

The Bochner-Schwartz theorem for Fourier ultra-hyperfunctions. / Yoshino, Kunio; Suwa, Masanori.

In: Integral Transforms and Special Functions, Vol. 17, No. 2-3, 02.2006, p. 109-114.

Research output: Contribution to journalArticle

@article{6034e4915f8a44769b4afaa24bf5d5df,
title = "The Bochner-Schwartz theorem for Fourier ultra-hyperfunctions",
abstract = "Positive definite generalized functions are analyzed through examples.",
keywords = "Positive definite generalized functions",
author = "Kunio Yoshino and Masanori Suwa",
year = "2006",
month = "2",
doi = "10.1080/10652460500436635",
language = "English",
volume = "17",
pages = "109--114",
journal = "Integral Transforms and Special Functions",
issn = "1065-2469",
publisher = "Taylor and Francis Ltd.",
number = "2-3",

}

TY - JOUR

T1 - The Bochner-Schwartz theorem for Fourier ultra-hyperfunctions

AU - Yoshino, Kunio

AU - Suwa, Masanori

PY - 2006/2

Y1 - 2006/2

N2 - Positive definite generalized functions are analyzed through examples.

AB - Positive definite generalized functions are analyzed through examples.

KW - Positive definite generalized functions

UR - http://www.scopus.com/inward/record.url?scp=33646524100&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646524100&partnerID=8YFLogxK

U2 - 10.1080/10652460500436635

DO - 10.1080/10652460500436635

M3 - Article

AN - SCOPUS:33646524100

VL - 17

SP - 109

EP - 114

JO - Integral Transforms and Special Functions

JF - Integral Transforms and Special Functions

SN - 1065-2469

IS - 2-3

ER -