### Abstract

LetM(n) be the largest integer that can be expressed as a sum of the reciprocal of distinct integers ≤n. Then for somec_{1},c_{2}>0, log n+γ-2-(c_{1}/log_{2} n)≤M(n)≤logn+γ-(c_{2}/log_{2} n), which answers a question of Erdos.

Original language | English |
---|---|

Pages (from-to) | 206-216 |

Number of pages | 11 |

Journal | Journal of Number Theory |

Volume | 76 |

Issue number | 2 |

DOIs | |

Publication status | Published - 1999 Jun |

Externally published | Yes |

### ASJC Scopus subject areas

- Algebra and Number Theory

### Cite this

*Journal of Number Theory*,

*76*(2), 206-216. https://doi.org/10.1006/jnth.1998.2359

**The Largest Integer Expressible as a Sum of Reciprocal of Integers.** / Yokota, Hisashi.

Research output: Contribution to journal › Article

*Journal of Number Theory*, vol. 76, no. 2, pp. 206-216. https://doi.org/10.1006/jnth.1998.2359

}

TY - JOUR

T1 - The Largest Integer Expressible as a Sum of Reciprocal of Integers

AU - Yokota, Hisashi

PY - 1999/6

Y1 - 1999/6

N2 - LetM(n) be the largest integer that can be expressed as a sum of the reciprocal of distinct integers ≤n. Then for somec1,c2>0, log n+γ-2-(c1/log2 n)≤M(n)≤logn+γ-(c2/log2 n), which answers a question of Erdos.

AB - LetM(n) be the largest integer that can be expressed as a sum of the reciprocal of distinct integers ≤n. Then for somec1,c2>0, log n+γ-2-(c1/log2 n)≤M(n)≤logn+γ-(c2/log2 n), which answers a question of Erdos.

UR - http://www.scopus.com/inward/record.url?scp=0011080214&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0011080214&partnerID=8YFLogxK

U2 - 10.1006/jnth.1998.2359

DO - 10.1006/jnth.1998.2359

M3 - Article

VL - 76

SP - 206

EP - 216

JO - Journal of Number Theory

JF - Journal of Number Theory

SN - 0022-314X

IS - 2

ER -